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In most neural network models, synapses are treated as static weights that
change only with the slow time scales of learning. It is well known, how-
ever, that synapses are highly dynamic and show use-dependent plasticity
over a wide range of time scales. Moreover, synaptic transmission is an
inherently stochastic process: a spike arriving at a presynaptic terminal
triggers the release of a vesicle of neurotransmitter from a release site
with a probability that can be much less than one.

We consider a simple model for dynamic stochastic synapses that can
easily be integrated into common models for networks of integrate-and-
fire neurons (spiking neurons). The parameters of this model have direct
interpretations in terms of synaptic physiology. We investigate the conse-
quences of the model for computing with individual spikes and demon-
strate through rigorous theoretical results that the computational power
of the network is increased through the use of dynamic synapses.

1 Introduction

In most neural network models, neurons are viewed as the only compu-
tational units, while the synapses are treated as passive scalar parameters
(weights). It has, however, long been recognized (see, for example, Katz,
1966; Magleby, 1987; Zucker, 1989; Zador & Dobrunz, 1997) that biological
synapses can exhibit rich temporal dynamics. These dynamics may have
important consequences for computing and learning in biological neural
systems.

There have been several previous studies of the computational conse-
quences of dynamic synapses. Little and Shaw (1975) investigated a synapse
model described in Katz (1966) for the neuromuscular junction and de-
scribed possible applications for memory tasks. Abbott, Varela, Sen, & Nel-
son (1997) showed that use-dependent depression of synapses can imple-
ment a form of dynamic gain control. Tsodyks and Markram (1997) and
Markram and Tsodyks (1997) proposed that dynamic synapses may sup-
port a transition from rate coding to temporal coding. Liaw and Berger

Neural Computation 11, 903–917 (1999) c© 1999 Massachusetts Institute of Technology



904 Wolfgang Maass and Anthony M. Zador

(1996) investigated a network model that involves dynamic synapses from
an excitatory neuron to an inhibitory neuron, which sends feedback directly
to the presynaptic terminals. They showed through computer simulations
that tuning the relative contributions of excitatory and inhibitory mech-
anisms can selectively increase the network output cross-correlation for
certain pairs of temporal input patterns (speech waveforms). On a more
abstract level Back and Tsoi (1991) and Principe (1994) investigated possi-
ble uses of filter-like synapses for processing time series in artificial neural
networks .

These previous models were based on data obtained from studies of
populations of peripheral or central release sites.1 Experimental data on the
temporal dynamics of individual release sites in the central nervous system
have only recently become available (Dobrunz & Stevens, 1997; Murthy, Se-
jnowski, & Stevens, 1997). In this article, we investigate a model for the tem-
poral dynamics of single-release sites motivated by these findings. In this
model, synapses either succeed or fail in releasing a neurotransmitter-filled
vesicle, and it is this probability of release that is under dynamic control.
The parameters of the resulting stochastic synapse model have an imme-
diate interpretation in terms of synaptic physiology, and hence provide a
suitable framework for investigating possible computational consequences
of changes in specific parameters of a biological synapse. After the presenta-
tion of this model in section 2, we analyze the computational consequences
of this model in section 3. We focus here on computations on short spike
trains, which have not been addressed previously in the literature.

2 A Model for the Temporal Dynamics of a Single Synapse

Single excitatory synapses in the mammalian cortex exhibit binary responses.
At each release site, either zero or one neurotransmitter-filled vesicles is re-
leased in response to a spike from the presynaptic neuron. When a vesicle
is released, its contents cross the synaptic cleft and open ion channels in the
postsynaptic membrane, thereby creating an electrical pulse in the postsy-
naptic neuron. The probability pS(ti) that a vesicle is released by a synapse
S varies systematically with the precise timing of the spikes ti in spike train;
the mean size of the postsynaptic response, by contrast, does not vary in a
systematic manner for different spikes in a spike train from the presynaptic
neuron (Dobrunz & Stevens, 1997). Moreover, the release probability varies
among different release sites; that is, release probability is heterogenous
(Hessler, Shirke, & Malinow, 1993; Rosenmund, Clements, & Westbrook,

1 At the neuromuscular junction, each synapse contains thousands of release sites. In
the cortex, pairs of neurons are typically connected by multiple release sites, although the
multiplicity is lower (Markram, 1997). By contrast, synapses from hippocampal region
CA3 to region CA1 pyramidal neurons are often mediated by a single release site (Harris
& Stevens, 1989).
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1993; Allen & Stevens, 1994; Manabe & Nicoll, 1994; Bolshakov & Siegel-
baum, 1995; Stevens & Wang, 1995; Markram & Tsodyks, 1996; Ryan, Ziv,
& Smith, 1996; Stratford, Tarczy-Hornoch, Martin, Bannister, & Jack, 1996;
Castro-Alamancos & Connors, 1997; Dobrunz & Stevens, 1997; Murthy et
al., 1997).

We represent a spike train as a sequence t of firing times, that is, as
increasing sequences of numbers t1 < t2 < . . . from R+ := {z ∈ R : z ≥ 0}.
For each spike train t the output of a synapse S consists of the sequence
S(t) of those ti ∈ t on which vesicles are “released” by S. These are ti ∈ t
that cause an excitatory or inhibitory postsynaptic potential (EPSP or IPSP,
respectively). The map t→ S(t)may be viewed as a stochastic function that
is computed by synapse S. Alternatively one can characterize the output
S(t) of a synapse S through its release pattern q = q1q2 . . . ∈ {R,F}∗, where R
stands for release and F for failure of release. For each ti ∈ t, one sets qi = R
if ti ∈ S(t), and qi = F if ti /∈ S(t).

The central equation in our dynamic synapse model gives the probability
pS(ti) that the ith spike in a presynaptic spike train t = (t1, . . . , tk) triggers
the release of a vesicle at time ti at synapse S,

pS(ti) = 1− e−C(ti)·V(ti). (2.1)

The release probability is assumed to be nonzero only for t ∈ t, so that
releases occur only when a spike invades the presynaptic terminal (i.e.,
the spontaneous release probability is assumed to be zero). The functions
C(t) ≥ 0 and V(t) ≥ 0 describe, respectively, the states of facilitation and
depletion at the synapse at time t.

The dynamics of facilitation are given by

C(t) = C0 +
∑
ti<t

c(t− ti), (2.2)

where C0 is some parameter ≥ 0 that can, for example, be related to the
resting concentration of calcium in the synapse. The exponential response
function c(s) models the response of C(t) to a presynaptic spike that had
reached the synapse at time t − s: c(s) = α · e−s/τC , where the positive pa-
rameters τC and α give the decay constant and magnitude, respectively, of
the response. The function C models in an abstract way internal synaptic
processes underlying presynaptic facilitation, such as the concentration of
calcium in the presynaptic terminal. The particular exponential form used
for c(s) could arise, for example, if presynaptic calcium dynamics were gov-
erned by a simple first-order process.

The dynamics of depletion are given by

V(t) = max( 0 , V0 −
∑

ti: ti<t and ti∈S(t)

v(t− ti)), (2.3)
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Figure 1: Synaptic computation on a spike train t, together with the temporal
dynamics of the internal variables C and V of our model. V(t) changes its value
only when a presynaptic spike causes release.

for some parameter V0 > 0. V(t) depends on the subset of those ti ∈ t with
ti < t on which vesicles were actually released by the synapse (ti ∈ S(t)).
The function v(s) models the response of V(t) to a preceding release of the
same synapse at time t− s ≤ t. Analogously as for c(s), one may choose for
v(s) a function with exponential decay v(s) = e−s/τV , where τV > 0 is the
decay constant. The function V models in an abstract way internal synaptic
processes that support presynaptic depression, such as depletion of the pool
of readily releasable vesicles. In a more specific synapse model, one could
interpret V0 as the maximal number of vesicles that can be stored in the
readily releasable pool and V(t) as the expected number of vesicles in the
readily releasable pool at time t.

In summary, the model of synaptic dynamics presented here is described
by five parameters: C0, V0, τC, τV and α. The dynamics of a synaptic com-
putation and its internal variables C(t) and V(t) are indicated in Figure 1.

For low-release probabilities, equation 2.1 can be expanded to first order
around r(t) := C(t) · V(t) = 0 to give

pS(ti) = C(ti) · V(ti)+O([C(ti) · V(ti)]2). (2.4)
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Similar expressions have been widely used to describe synaptic dynamics
for multiple synapses (Magleby, 1987; Markram & Tsodyks, 1996; Varela et
al., 1997).

In our synapse model, we have assumed a standard exponential form for
the decay of facilitation and depression (see, e.g., Magleby, 1987; Markram &
Tsodyks, 1996; Dobrunz & Stevens, 1997; Varela et al., 1997). We have further
assumed a multiplicative interaction between facilitation and depletion.
Although this form has not been validated at single synapses, in the limit of
low-release probability (see equation 2.4), it agrees with the multiplicative
term employed in Varela et al. (1997) to describe the dynamics of multiple
synapses.

The assumption that release at individual release sites of a synapse is
binary—that each release site releases 0 or 1, but not more than 1, vesicle
when invaded by a spike—leads to the exponential form of equation 2.1
(Dobrunz & Stevens, 1997). We emphasize the formal distinction between
release site and synapse. A synapse might in principle consist of several in-
dependent release sites in parallel, each of which has a dynamics similar to
that of the stochastic synapse model we consider.

It is known that synaptic facilitation and depression occur on multiple
time scales, from a few hundred milliseconds to hours or longer. Hence in
a more complex version of our model, one should replace C(t) and V(t) by
sums of several such functions Cj(t),Vj(t) with heterogeneous parameters
(in particular, different time constants τCj , τVj ). We refer to Maass and Zador
(1998) for details.

3 Results

3.1 Different “Weights” for the First and Second Spike in a Train. We
start by investigating the range of different release probabilities pS(t1), pS(t2)

that a synapse S can assume for the first two spikes in a given spike train.
These release probabilities depend on t2 − t1, as well as on the values of
the internal parameters C0,V0, τC, τV, α of the synapse S. Here we analyze
the potential freedom of a synapse to choose values for pS(t1) and pS(t2).
We show in theorem 1 that the range of values for the release probabilities
for the first two spikes is quite large. Furthermore the theorem shows that
a synapse loses remarkably little with regard to the dynamic range of its
release probabilities for the first two spikes if it tunes only the two param-
eters C0 and V0. To prove this, we consider a worst-case scenario, where
t2− t1, α, τC, τV are arbitrary given positive numbers. We prove that in spite
of these worst-case assumptions, any synapse S can assume almost all pos-
sible pairs 〈p(t1), p(t2)〉 of release probabilities by choosing suitable values
for its remaining two parameters, C0 and V0.

The computation of the exact release probabilities pS(tj) for the spikes tj
in a spike train t is rather complex, because the value of V(tj) (and hence
the value of pS(tj)) depends on which preceding spikes ti < tj in t were



908 Wolfgang Maass and Anthony M. Zador

1/4

p

p
1

2

Figure 2: The dotted area indicates the range of pairs 〈p1, p2〉 of release prob-
abilities for the first and second spike through which a synapse can move (for
any given interspike interval) by varying its parameters C0 and V0.

released by this synapse S. More precisely, the value of pS(tj) depends on the
release pattern q ∈ {R,F}j−1 that the synapse had produced for the preceding
spikes. For any such pattern q ∈ {R,F}j−1, we write pS(tj|q) for the conditional
probability that synapse S releases spike tj in t, provided that the release
pattern q was produced by synapse S for the preceding spike train t. Thus,
the release probability pS(t2) for the second spike in a spike train can be
written in the form

pS(t2) = pS(t2|q1 = R) · pS(t1)+ pS(t2|q1 = F) · (1− pS(t1)). (3.1)

Theorem 1. Let 〈t1, t2〉 be some arbitrary spike train consisting of two spikes,
and let p1, p2 ∈ (0, 1) be some arbitrary given numbers with p2 > p1 · (1 − p1).
Furthermore assume that arbitrary positive values are given for the parameters
α, τC, τV of a synapse S. Then one can always find values for the two parameters
C0 and V0 of the synapse S so that pS(t1) = p1 and pS(t2) = p2.

Furthermore the condition p2 > p1 · (1 − p1) is necessary in a strong sense. If
p2 ≤ p1 · (1− p1) then no synapse S can achieve pS(t1) = p1 and pS(t2) = p2 for
any spike train 〈t1, t2〉 and for any values of its parameters C0,V0, τC, τV, α.

An illustration of the claim of theorem 3.1 is provided in Figure 2. The proof
of theorem 1 is given in appendix A.1.

If one associates the current sum of release probabilities of multiple
synapses or release sites between two neurons u and v with the current
value of the connection strength wu,v between two neurons in a formal
neural network model, then the preceding result points to a significant dif-
ference between the dynamics of computations in biological circuits and
formal neural network models. Whereas in formal neural network models
it is commonly assumed that the value of a synaptic weight stays fixed dur-
ing a computation, the release probabilities of synapses in biological neural
circuits may change on a fast time scale within a single computation.

One might use this observation as inspiration for studying a variation of
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formal neural network models where the values of synaptic weights may
change during a computation according to some simple rule. The following
fact will demonstrate that even in the case of a single McCulloch-Pitts neuron
(i.e., threshold gate), this suggests an interesting new computational model.
Consider a threshold gate with n inputs that receives an input ExEy of 2n bits in
two subsequent batches Ex and Ey of n bits each. We assume that the n weights
w1, . . . ,wn of this gate are initially set to 1 and that the threshold of the gate is
set to 1. We adopt the following very simple rule for changing these weights
between the presentations of the two parts Ex and Ey of the input: the value of
wi is changed to 0 during the presentation of the second part Ey of the input if
the ith component xi of the first input part Ex was nonzero. If we consider the
output bit of this threshold gate after the presentation of the second part Ey of
the input as the output of the whole computation, this threshold gate with
“dynamic synapses” computes the boolean function Fn : {0, 1}2n → {0, 1}
defined by Fn(Ex, Ey) = 1 ⇐⇒ ∃i ∈ {1, . . . ,n}(yi = 1 and xi = 0). One might
associate this function Fn with some novelty detection task since it detects
whether an input bit has changed from 0 to 1 in the two input batches Ex
and Ey.

It turns out that this function cannot be computed by a small circuit,
consisting of just two or three “static” threshold gates of the usual type, that
receives all 2n input bits ExEy as one batch. In fact, one can prove that any
feedforward circuit consisting of the usual type of “static” threshold gates,
which may have arbitrary weights, thresholds, and connectivity, needs to
consist of at least n

log(n+1) gates in order to compute Fn. This lower bound
can easily be derived from the lower bound from Maass (1997) for another
boolean function CDn(Ex, Ey) from {0, 1}2n into {0, 1} which gives output 1 if
and only if xi+ yi ≥ 2 for some i ∈ {1, . . . ,n}, since CDn(Ex, Ey) = Fn(E1− Ex, Ey).

3.2 Release Patterns for the First Three Spikes. In this section we exam-
ine the variety of release patterns that a synapse can produce for spike trains
t1, t2, t3, . . . with at least three spikes. We show not only that a synapse can
make use of different parameter settings to produce different release pat-
terns, but also that a synapse with a fixed parameter setting can respond
quite differently to spike trains with different interspike intervals. Hence a
synapse can serve as a pattern detector for temporal patterns in spike trains.

It turns out that the structure of the triples of release probabilities 〈pS(t1),
pS(t2), pS(t3)〉 that a synapse can assume is substantially more complicated
than for the first two spikes considered in the previous section. Therefore, we
focus here on the dependence of the most likely release pattern q ∈ {R,F}3
on the internal synaptic parameters and the interspike intervals I1 := t2− t1
and I2 := t3 − t2. This dependence is in fact quite complex, as indicated in
Figure 3.

Figure 3 (left) shows the most likely release pattern for each given pair of
interspike intervals 〈I1, I2〉, given a particular fixed set of synaptic param-
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Figure 3: (Left) Most likely release pattern of a synapse in dependence of the
interspike intervals I1 and I2. The synaptic parameters are C0 = 1.5, V0 = 0.5,
τC = 5, τV = 9, α = 0.7. (Right) Release patterns for a synapse with other values
of its parameters (C0 = 0.1, V0 = 1.8, τC = 15, τV = 30, α = 1).

eters. One can see that a synapse with fixed parameter values is likely to
respond quite differently to spike trains with different interspike intervals.
For example even if one considers just spike trains with I1 = I2 one moves
in Figure 3 (left) through three different release patterns that take their turn
in becoming the most likely release pattern when I1 varies. Similarly, if one
considers only spike trains with a fixed time interval t3 − t1 = I1 + I2 = 1,
but with different positions of the second spike within this time interval of
length 1, one sees that the most likely release pattern is quite sensitive to
the position of the second spike within this time interval1. Figure 3 (right)
shows that a different set of synaptic parameters gives rise to a completely
different assignment of release patterns.

We show in the next theorem that the boundaries between the zones in
these figures are plastic; by changing the values of C0,V0, α the synapse can
move the zone for most of the release patterns q to any given point 〈I1, I2〉.
This result provides another example for a new type of synaptic plasticity
that can no longer be described in terms of a decrease or increase of synaptic
weight.

Theorem 2. Assume that an arbitrary number p ∈ (0, 1) and an arbitrary pat-
tern 〈I1, I2〉 of interspike intervals is given. Furthermore, assume that arbitrary
fixed positive values are given for the parameters τC and τV of a synapse S. Then
for any pattern q ∈ {R,F}3 except RRF, FFR one can assign values to the other
parameters α,C0,V0 of this synapse S so that the probability of release pattern q
for a spike train with interspike intervals I1, I2 becomes larger than p.

The proof of theorem 2 is rather straightforward (see Maass & Zador,
1998).

It was not claimed in theorem 2 that the occurrence of the release patterns
RRF and FFR can be made arbitrarily likely for any given spike train with
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interspike intervals 〈I1, I2〉. The following theorems show that this is in fact
false.

Theorem 3. The release pattern RRF can be made arbitrarily likely for a spike
train with interspike intervals I1, I2 through suitable choices of C0 and V0 if and
only if e−I1/τV < e−(I1+I2)/τV + e−I2/τV . In particular, the pattern RRF can be made
arbitrarily likely for any given interspike intervals I1, I2 and any given value of α
and τC if one can vary τV in addition to C0 and V0.

On the other hand if the values of τC and τV are fixed so that e−I1/τC ≤
e−(I1+I2)/τC + e−I2/τC and e−I1/τV ≥ e−(I1+I2)/τV + e−I2/τV , then the probability
of the release pattern RRF is at most 0.25 for any assignment of values to α, C0,
and V0.

The proof of theorem 3 is given in appendix A.2.

Theorem 4. Consider some arbitrarily fixed positive value for the synapse pa-
rameter τC. There does not exist any pattern 〈I1, I2〉 of interspike intervals for which
it is possible to find values for the other synapse parametersα,C0,V0, and τV so that
the release pattern FFR becomes arbitrarily likely for a spike train with interspike
intervals I1, I2.

Proof. It is not possible to find for any fixed I1, I2 > 0 values for α and
V0 so that simultaneously α · e−I1/τC · V0 becomes arbitrarily small and (α ·
e−(I1+I2)/τC + α · e−I2/τC) · V0 becomes arbitrarily large.

3.3 Burst Detection. Here we show that the computational power of a
spiking (e.g., integrate-and-fire) neuron with stochastic dynamic synapses
is strictly larger than that of a spiking neuron with traditional static synapses
(Lisman, 1997). Let T be some given time window, and consider the com-
putational task of detecting whether at least one of n presynaptic neurons
a1, . . . , an fires at least twice during T (“burst detection”). To make this task
computationally feasible, we assume that none of the neurons a1, . . . , an
fires outside this time window. A method for burst detection by a single
neuron with dynamic synapses has been proposed (Lisman, 1997). The new
feature of theorem 5 is a rigorous proof (given in appendix A.3) that no
spiking neuron with static synapses can solve this task, thereby providing a
separation result for the computational power of spiking neurons with and
without dynamic synapses.

Theorem 5. A spiking neuron v with dynamic stochastic synapses can solve this
burst detection task (with arbitrarily high reliability). On the other hand, no spiking
neuron with static synapses can solve this task (for any assignment of weights to
its synapses).2

2 We assume here that neuronal transmission delays differ by less than (n−1)·T, where
by transmission delay we refer to the temporal delay between the firing of the presynaptic
neuron and its effect on the postsynaptic target.
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Figure 4: Mechanism for translating temporal coding into population coding.

3.4 Translating Interval Coding into Population Coding. Assume that
information is encoded in the length I of the interspike interval between
the times t1 and t2 when a certain neuron v fires and that different motor
responses need to be initiated depending on whether I < a or I > a, where
a is some given parameter. For that purpose, it would be useful to translate
the information encoded in the interspike interval I into the firing activity of
populations of neurons (“population coding”). Figure 4 illustrates a simple
mechanism for that task based on dynamic synapses.

The synaptic parameters are chosen so that facilitation dominates (i.e.,
C0 should be small and α large) at synapses between neuron v and the
postsynaptic population of neurons. The release probability for the first
spike is then close to 0, whereas the release probability for the second spike
is fairly large if I < a and significantly smaller if I is substantially larger
than a. If the resulting firing activity of the postsynaptic neurons is posi-
tively correlated with the total number of releases of these synapses, then
their population response depends on the length of the interspike interval
I.

A somewhat related task for neural circuits is discussed in Bugmann
(1998). Suppose a population of neurons is to be activated1 time steps after
a preceding cue, which is given in the form of transient high firing activity
of some other pool of neurons. It is not obvious how a circuit of spiking
neurons can carry out this task for values of 1 that lie in a behaviorally
relevant range of a few hundred msecs or longer. One possible solution
is described in Bugmann (1998). An alternative solution is provided with
the help of depressing synapses by a variation of the previously sketched
mechanism. Assume that these synapses are moved through very high firing
activity of the presynaptic neurons (the “cue”) to a state where their release
probability is fairly low for a time period in the range of 1. Continued
moderate activity of the presynaptic neurons can then activate a population
of neurons at a time difference of about 1 to the cue.

4 Discussion

We have proposed and analyzed a general model for the temporal dynam-
ics of single synapses that is sufficiently complex to reflect recent experi-
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mental data yet sufficiently simple to be theoretically tractable, at least for
short spike trains. The internal parameters C0,V0, τC, τV, α of our model
have a direct interpretation in terms of the physiology of single synapses.
This model thereby provides a tool for analyzing possible functional conse-
quences of hypotheses and experimental results from synapse physiology.
For example, intrasynaptic calcium dynamics and the size of the readily
releasable vesicle pool are plausible candidate targets for long term plas-
ticity. In theorem 1 we show that by changing just two parameters (C0 and
V0), a synapse can attain the full dynamic range of release probabilities
for two spikes (with arbitrary interspike interval) that could theoretically
be attained by changing all five parameters in the synapse model. In the-
orem 2 we show further that by tuning an additional third parameter α,
corresponding to the amount of calcium that enters the presynaptic termi-
nal upon arrival of an action potential, a synapse can be adjusted to respond
to any given pattern of interspike intervals in a train of three spikes with a
specific release pattern. On the other hand theorems 3 and 4 also make con-
crete predictions regarding the limitations of synaptic dynamics for short
spike trains. Finally we have given in theorem 5 a rigorous proof that dy-
namic synapses increase the computational power of a spiking neuron, and
we have shown at the end of section 3.1 a related separation result on a more
abstract level.

For longer spike trains, the dynamics of the model considered in this
article becomes too complex for a rigorous theoretical analysis, but it is
easy to simulate in a computer. Results of computer simulations for longer
spike trains can be found in Maass and Zador (1998) and Zador, Maass, and
Natschläger (1998).

Appendix

A.1 Proof of Theorem 1. We first show that the condition p2 > p1·(1−p1)

is a necessary condition. More precisely, we show that ps(t2) > pS(t1) · (1−
pS(t1)) holds for any spike train 〈t1, t2〉 and any synapse S, independent of
t2− t1, the values of its internal parameters, and the precise synapse model.

This argument is very simple. One always has C(t2) > C(t1), and in
addition V(t2) = V(t1) if the synapse does not release for the first spike.
This implies that pS(t2|q1 = F) > pS(t1). Hence equation 3.1 implies that
pS(t2) ≥ pS(t2|q1 = F) · (1− pS(t1)) > pS(t1) · (1− pS(t1)).

The proof of the positive part of theorem 1 is more complex. We want to
show that for any given pair of numbers p1, p2 ∈ (0, 1)with p2 > p1 ·(1−p1),
for any given spike train 〈t1, t2〉, and any given values of the parameters
α, τC, τV of our basic synapse model one can find values for the parameters
C0 and V0 so that

pS(t1) = p1 and pS(t2) = p2.
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We first observe that according to equations 2.1 and 3.5, we have

pS(t1) = 1− e−C0·V0 (A.1)

and

pS(t2) = (1− e−(C0+α·e−(t2−t1)/τC )·max(0 , V0−e−(t2−t1)/τV )) · pS(t1)

+ (1− e−(C0+α·e−(t2−t1)/τC )·V0) · (1− pS(t1)). (A.2)

Fix ρ ∈ (0,∞) so that 1− e−ρ = p1. Hence in order to achieve pS(t1) = p1
it suffices according to equation A.1 to choose values for C0 and V0 so that
C0 · V0 = ρ. If we define C0 by

C0 := ρ

V0
, (A.3)

then the equation C0 ·V0 = ρ is satisfied by any positive value of V0. With the
substitution (see equation A.3) the right-hand side of equation A.2 becomes
a continuous function f (V0) of the single variable V0. We will show that this
function f (V0) assumes arbitrary values in the interval (p1 · (1 − p1) , 1)
when V0 ranges over (0,∞).

We first show that f (V0) converges to p1 · (1 − p1) when V0 approaches
0 (and C0 varies simultaneously according to equation A.3). In this case the
exponent in the first term on the right-hand side of equation A.2 converges
to 0, and the exponent−(C0+α ·e−(t2−t1)/τC)·V0 in the second term converges
to −ρ. We then exploit that 1 − e−ρ = p1 (by definition of ρ). In the other
extreme case when V0 becomes arbitrarily large, both of these exponents
converge to −∞. Therefore the right-hand side of equation A.2 converges
to p1(t1)+ (1− pS(t1)) = 1.

Finally we observe that f (V0) is a continuous function of V0, and hence
assumes for positive V0 any value between p1 · (1− p1) and 1. In particular
f (V0) assumes the value p2 for some positive value of V0.

A.2 Proof of Theorem 3. Let 〈t1, t2, t3〉 be a spike train with interspike
intervals I1, I2. Assume first that e−I1/τV < e−(I1+I2)/τV + e−I2/τV . We note that
this condition can be satisfied for any given I1, I2 if τV is made sufficiently
large relative to I1, I2. Set V0 := e−(I1+I2)/τV + e−I2/τV . Then the probability of
release for the first two spikes can be made arbitrarily large by choosing a
sufficiently large value for C0, while the probability of release for the third
spike becomes simultaneously arbitrarily small.

We now consider the consequences of the assumption that e−I1/τV ≥
e−(I1+I2)/τV + e−I2/τV . If in addition e−I1/τC ≤ e−(I1+I2)/τC + e−I2/τC , which can
always be achieved by making τC sufficiently large, then this assumption
implies that pS(t3|q1 = q2 = R) ≥ pS(t2|q1 = R). Hence

Pr[RRF] = pS(t1) · pS(t2|q1 = R) · (1− pS(t3|q1 = q2 = R))

≤ pS(t1) · pS(t2|q1 = R) · (1− pS(t2|q1 = R)) ≤ 0.25.
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A.3 Proof of Theorem 5. One can choose the parameters C0 and V0 of
n excitatory synapses from a1, . . . , an to v in such a way that α · e−T/τC · V0
is sufficiently large and C0 · V0 is sufficiently small for any given values of
the other parameters of these n synapses. In this way the release pattern
FR gets arbitrarily high probability for these synapses for any spike train
〈t1, t2〉with t2 − t1 ≤ T.

If one sets the firing threshold of neuron v so low that it fires on receiving
at least one EPSP, then the neuron v with n dynamic synapses solves the
burst detection task with arbitrarily high reliability.

In order to prove the second part of theorem 5, we have to show that
it is impossible to set the parameters of a spiking neuron v with n static
synapses (and transmission delays that differ by less than (n − 1) · T) so
that this neuron v can solve the same burst-detection task. In order to detect
whether any of the preceding neurons a1, . . . , an fires at least twice during
the time window of length T, one has to choose the weights w1, . . . ,wn of
the synapses between a1, . . . , an and v positive and so large that even two
EPSPs in distance up to T with amplitude min{wi : i = 1, . . . ,n} reach the
firing threshold of v. Since by assumption the differences in transmission
delays to v are less than (n−1) ·T, there are two preceding neurons ai and aj
with i 6= j whose transmission delay differs by less than T. Hence for some
single firing times of ai and aj during the time window of length T that we
consider, the resulting EPSPs arrive simultaneously at the trigger zone of
v. By our preceding observation these two EPSPs together will necessarily
reach the firing threshold of v, and hence cause a “false alarm.”
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