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Abstract

In this chapter, we describe how to create mathematical models of synaptic transmis-
sion and integration. We start with a brief synopsis of the experimental evidence under-
lying our current understanding of synaptic transmission. We then describe synaptic
transmission at a particular glutamatergic synapse in the mammalian cerebellum, the
mossy fiber to granule cell synapse, since data from this well-characterized synapse
can provide a benchmark comparison for how well synaptic properties are captured
by different mathematical models. This chapter is structured by first presenting the sim-
plest mathematical description of an average synaptic conductance waveform and then
introducing methods for incorporating more complex synaptic properties such as
nonlinear voltage dependence of ionotropic receptors, short-term plasticity, and sto-
chastic fluctuations. We restrict our focus to excitatory synaptic transmission, but most
of the modeling approaches discussed here can be equally applied to inhibitory
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synapses. Our data-driven approach will be of interest to those wishing to model syn-
aptic transmission and network behavior in health and disease.

1. INTRODUCTION

1.1. A brief history of synaptic transmission
Some of the first intracellular voltage recordings from the neuromuscular

junction (NMJ) revealed the presence of spontaneous miniature end plate

potentials with fast rise and slower decay kinetics.1 The similarity of these

“mini” events to the smallest events evoked by nerve stimulation, together

with the discrete nature of the fluctuations in the amplitude of the end plate

potentials,2 lead to the hypothesis that transmitter was released probabilisti-

cally in discrete all-or-none units called “quanta,”3 units that were subse-

quently shown to be vesicles containing neurotransmitter. The quantum

hypothesis is an elegantly simple yet extremely powerful statistical model

of transmitter release: the average number of quanta released at a synapse

per stimulus (quantal content, m) is simply the product of the total number

of quanta available for release (NT) and their release probability (P):

m¼NTP ð13:1Þ
Quantitative comparison of the predictions of the quantum hypothesis

against experimental measurements confirmed the hypothesis,3 albeit under

nonphysiological conditions of low release probabilities. Subsequent

electron micrograph studies revealed presynaptic vesicles clustered at active

zones,4–7 providing compelling morphological equivalents for the quanta

and their specialized release sites. Other work around the same time revealed

the dynamic nature of synaptic transmission at the NMJ, providing the first

concepts for activity-dependent short-term changes in synaptic strength.8,9

Further work by Katz and colleagues lead to the concept of Ca2þ-dependent
vesicular release and the refinement of ideas regarding the activation of post-

synaptic receptors.3 Together, this early body of work on the NMJ provided

the basis for our current understanding of the intricate signaling cascade

underlying synaptic transmission. The basic mechanisms underlying synaptic

transmission are summarized in Fig. 13.1: an action potential, propagating

down the axon of the presynaptic neuron, invades synaptic terminals.

The brief depolarization of the terminals causes voltage-gated Ca2þ channels

(VGCCs) to open, leading to Ca2þ influx and a transient increase in the

intracellular Ca2þ concentration ([Ca]i) in the vicinity of the VGCCs.
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For those vesicles docked at a release site near one or more VGCCs, the local

increase in [Ca]i triggers the vesicles to fuse with the terminal membrane and

release their content of neurotransmitter into the synaptic cleft. The released

neurotransmitter diffuses across the narrow synaptic cleft and binds to post-

synaptic ionotropic receptors, transiently increasing their open probability.

The resulting flow of Naþ and Kþ through the receptors’ ion channels

results in an excitatory postsynaptic potential (EPSP) or excitatory postsyn-

aptic current (EPSC) depending on whether the intracellular recording is

made under a current- or voltage-clamp configuration.

Figure 13.1 Cartoon illustrating the basic sequence of events underlying synaptic
transmission. The sequence starts with an action potential (AP) invading a presynaptic
terminal, leading to the opening of voltage-gated Ca2þ channels (VGCCs), some of
which are located near vesicle release sites within one or more active zones. For those
release sites containing a readily releasable vesicle, the local rise in [Ca2þ]i causes the
fusion of the vesicle with the terminal's membrane, resulting in the release of neuro-
transmitter packed inside the vesicle. The neurotransmitter diffuses across the synaptic
cleft to reach the postsynaptic membrane where it binds to ionotropic receptors,
causing the channels to open and pass Naþ and Kþ. The permeation of these ions
through the ionotropic receptors leads to a local injection of current, known as the EPSC.
The EPSC often contains fast and slow components due to the fast activation of recep-
tors immediately opposite to the vesicle release site and the slower activation of re-
ceptors further away (i.e., extrasynaptic). Kinetics of the EPSC will also depend on the
receptor's affinity for the neurotransmitter and the receptor's gating properties, which
may include blocked and desensitization states.
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Some 20 years after the early work on the NMJ, development of the

patch-clampmethod increased the signal-to-noise ratio of electrophysiolog-

ical recordings by several orders of magnitude over traditional sharp-

electrode recordings.10 The patch-clamp method not only confirmed the

existence of individual ion channels but also enabled resolution of signifi-

cantly smaller EPSCs, thereby paving the way for studies of synaptic trans-

mission in the central nervous system (CNS). Although these studies

revealed the basic mechanisms underlying synaptic transmission are largely

similar at the NMJ and in the brain (Fig. 13.1), there are a number of key

differences. For example, whereas synaptic transmission in the NMJ is medi-

ated by the release of 100–1000 vesicles2 at highly elongated active zones,11

synaptic transmission between neurons in the brain is typically mediated by

the release of just a few vesicles at a handful of small active zones.12,13 The

number of postsynaptic receptors is also quite different: vesicle release acti-

vates thousands of postsynaptic receptors in the NMJ14 but only a few

(�10–100) at central excitatory synapses.15,16 These differences in scale link

directly to synaptic function: the large potentials generated at the NMJ

ensure a reliable relay of motor command signals from presynaptic neuron

to postsynaptic muscle. In contrast, the much smaller potentials generated by

central synapses require spatiotemporal summation in order to trigger action

potentials.

Another important distinction between the NMJ and central synapses is

the difference in neurotransmitter (acetylcholine at the NMJ vs. glutamate,

GABA, glycine, etc., in the CNS) and the diversity in postsynaptic receptors

and their function. Here we focus on excitatory central synapses, where two

major classes of ionotropic glutamate receptors, AMPA and NMDA recep-

tors (AMPARs and NMDARs), are colocalized.17,18 These two receptor

types have different gating kinetics and current–voltage relations and there-

fore play distinct roles in synaptic transmission. The majority of AMPARs,

for example, have relatively fast kinetics and a linear (ohmic) current–voltage

relation, often expressed as:

IAMPAR¼GAMPAR V �EAMPARð Þ ð13:2Þ

where V is the membrane potential and EAMPAR is the reversal potential of

the AMPAR conductance (GAMPAR), which is typically 0 mV. Both of

these properties, that is, fast kinetics and a linear current–voltage relation,

make AMPARs well suited for mediating temporally precise signaling

and setting synaptic weight. NMDARs, in contrast, have slower kinetics
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and a nonlinear current–voltage relation, the latter caused by Mg2þ block at

hyperpolarized potentials.19 These properties make NMDARs well suited

for coincidence detection and plasticity, since presynaptic glutamate release

and postsynaptic depolarization are required for NMDAR activation.20 Cer-

tain subtypes of NMDARs, however, show a weaker Mg2þ block (i.e.,

those containing the GluN2C and GluN2D subunits) and therefore create

substantial synaptic current at hyperpolarized potentials.21,22 These types of

NMDARs are thought to enhance synaptic transmission by enabling tem-

poral integration of low-frequency inputs.22 Of course, numerous other dif-

ferences exist between the NMJ and central synapses, including those

pertaining to stochasticity- and time-dependent plasticity. These are dis-

cussed further in the next section where we introduce the MF-to-GC syn-

apse, our synapse of choice for providing accurate data for the synaptic

models presented in this chapter.

1.2. The cerebellar MF–GC synapse as an experimental
model system

The input layer of the cerebellum receives sensory and motor signals via

MFs23 which form large en passant synapses, each of which contacts several

GCs (Fig. 13.2A). Although GCs are the smallest neuron in the vertebrate

brain, they account for more than half of all neurons. Each GC receives

excitatory synaptic input from 2 to 7 MFs, and each synaptic connection

consists of a handful of active zones.27,28 The small number of synaptic

inputs, along with a small soma and electrically compact morphology, makes

GCs particularly suitable for studying synaptic transmission.15,18 In

Fig. 13.2B, we show representative examples of EPSCs recorded at a single

MF–GC synaptic connection under resting basal conditions (gray traces).

Here, fluctuations in the peak amplitude of the EPSCs highlight the stochas-

tic behavior of synaptic transmission introduced above. Analysis of such fluc-

tuations using multiple-probability fluctuation analysis (MPFA), a technique

based on a multinomial statistical model, has provided estimates for NT,

P and the postsynaptic response to a quantum of transmitter (Q), for single

MF–GC connections. MPFA indicates that at low frequencies synaptic

transmission is meditated by 5–10 readily releasable vesicles (or, equivalently

the number of functional release sitesNT), with each vesicle or site having a

vesicular release probability (P) of �0.5.26,29 Experiments with rapidly

equilibrating AMPAR antagonists suggest that release is predominantly uni-

vesicular at this synapse (one vesicle released per synaptic contact), an inter-

pretation that is supported by the finding that at some weak MF–GC
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Figure 13.2 Synaptic transmission at the cerebellar MF–GC synapse. (A) Electron micro-
graph of a cerebellar MF terminal filled with thousands of synaptic vesicles and a few
large mitochondria. Synaptic contacts with GC dendrites appear along the contours of
the MF membrane at several locations, evident by the wider and darker appearance of
the membrane due to clustering of proteins within the presynaptic active zone and
postsynaptic density. (B) Superimposed AMPAR-mediated EPSCs (gray) recorded from
a single MF–GC connection, showing considerable variability in amplitude and time
course from trial to trial. On some trials, failure of direct release revealed a spillover cur-
rent with slow rise time. Such trials were separated using the rise time criteria of Ref. 24.
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connections a maximum of only one vesicle is released even when P is

increased to high levels.15,26

Synaptic responses to low-frequency presynaptic stimuli (e.g., those in

Fig. 13.2B) provide useful information about NT, P, and Q under resting

conditions. To explore how these quantal synaptic parameters change in

an activity-dependent manner, however, paired-pulse stimulation protocols

or high-frequency trains of stimuli are required. Figure 13.2C shows an

example of the latter, where responses of a single MF–GC connection to

the same 100 Hz train of stimuli are superimposed (gray traces). Here, fluc-

tuations in the peak amplitude of the EPSCs can still be seen (see inset), but

successive peaks between stimuli also show clear signs of depression. The

average of all responses (black trace) reveals the depression more clearly.

Although by eye, signs of facilitation are not apparent in Fig. 13.2C, facil-

itation at this synapse most likely exists. We know this since lowering P at

this synapse, by lowering the extracellular Ca2+ concentration, has revealed

the presence of both depression and facilitation; however, because depres-

sion predominates under normal conditions, facilitation is not always appar-

ent.29 As described in detail later in this chapter, mathematical models have

been developed to simulate synaptic depression and facilitation. If used

appropriately, these models can provide useful insights into the underlying

mechanisms of synaptic transmission. Such models have revealed, for

The average direct-release component (green) was computed by subtracting the
average spillover current (blue) from the average total EPSC (black). Arrow denotes
time of extracellular MF stimulation, which occurred at a slow frequency of 2 Hz;
most of the stimulus artifact has been blanked for display purposes. (C) Sup-
erimposed AMPAR-mediated EPSCs (gray) recorded from a single MF–GC connec-
tion and their average (black). The MF was stimulated at 100 Hz with an external
electrode (arrows at top). Successive EPSCs show clear signs of depression. Inset
shows EPSC responses to fourth stimulus on expanded timescale, showing the
variation in peak amplitude. Stimulus artifacts have been blanked. (D) Average
direct-release AMPAR conductance waveform (gray) fit with Gsyn(t) defined by the
following functions: alpha (Eq. 13.5), one-exponential (Eq. 13.4), two-exponential
(Eq. 13.6), multiexponential (4-Exp, Eq. 13.7). Most functions gave a good fit except
the one-exponential function (blue). The conductance waveform was computed
from the average current waveform in (B) via Eq. (13.3). (E) Same as (D) but for
the average spillover component in (B). Most functions gave a good fit except
the alpha function (green). (F) Same as (D) but for an average NMDAR-mediated
conductance waveform computed from four different MF–GC connections. Again,
most functions gave a good fit except the alpha function (green). Dashed lines
denote 0. (A) Image from Palay and Chan-Palay25 with permission. (B) Data from Sar-
gent et al.26 with permission.
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example, a rapid rate of vesicle reloading at the MF–GC synapse

(k1¼60–80 ms�1) as well as a large pool of vesicles that can be recruited rap-

idly at each release site (�30029–31). These findings offer an explanation as to

how the MF–GC synapse can sustain high-frequency signaling for pro-

longed periods of time.

The MF–GC synapse forms part of a glomerular-type synapse, which

also occur in the thalamus and dorsal spinocerebellar tract. While the pur-

pose of the glomerulus has not been determined definitively, experimental

evidence from the MF–GC synapse indicates this glial-ensheathed structure

promotes transmitter spillover between excitatory synaptic connections24,32

and between excitatory and inhibitory synaptic connections.33 AMPAR-

mediated EPSCs recorded from a MF–GC connection, therefore, exhibit

both a fast “direct” component arising from quantal release at the MF–

GC connection under investigation (Fig. 13.2B, green trace) and a slower

component mediated by glutamate spillover from neighboring MF–GC

connections (blue trace). While direct quantal release is estimated to activate

about 50% of postsynaptic AMPARs at the peak of the EPSC,34 spillover is

estimated to activate a significantly smaller fraction. However, because spill-

over produces a prolonged presence of glutamate in the synaptic cleft, acti-

vation of AMPARs by spillover can contribute as much as 50% of the

AMPAR-mediated charge delivered to GCs.24

Glutamate spillover also activates NMDARs, but mostly at mature MF–

GC synapses when the NMDARs occupy a perisynaptic location.35 At a

more mature time of development, MF–GC synapses also exhibit a weak

Mg2þ block due to the expression of GluN2C and/or GluN2D sub-

units.22,36,37 The weak Mg2þ block allows NMDARs to pass a significant

amount of charge at subthreshold potentials, thereby creating a spillover cur-

rent comparable in size to the AMPAR-mediated spillover current. Using

several of the modeling techniques discussed in this chapter, we were able to

show the summed contribution from both AMPAR andNMDAR spillover

currents enables GCs to integrate over comparatively long periods of time,

thereby enabling transmission of low-frequency MF signals through the

input layer of the cerebellum.22

In the following sections, we describe how to capture the various prop-

erties of synaptic transmission recorded at theMF–GC synapse inmathemat-

ical forms that can be used in computer simulations. We start with the most

basic features of the synapse, the postsynaptic conductance waveform, and

the resulting postsynaptic current, and add biological detail from there.

However, several aspects of synaptic transmission are beyond the scope of
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this chapter. These include long-term plasticity (i.e., Hebbian learning) and

presynaptic Ca2þ dynamics. Mathematical models of these synaptic pro-

cesses can be found elsewhere.38–42

2. CONSTRUCTING SYNAPTIC CONDUCTANCE
WAVEFORMS FROM VOLTAGE-CLAMP RECORDINGS

The time course of a synaptic conductance, denoted Gsyn(t), can be

computed from the synaptic current, Isyn(t), measured at a particular holding

potential (Vhold) using the whole-cell voltage-clamp technique. If the syn-

apse under investigation is electrotonically close to the somatic patch pipette,

as is the case with the MF–GC synapse, then adequate voltage clamp can be

achieved and the measured Isyn(t) will have relatively small distortions due to

poor space clamp. On the other hand, if the synapse under investigation is

electrotonically distant to the somatic patch pipette, for example, at the tip of

a spine several hundred micrometers from the soma, then significant errors

due to poor space clamp will distort nearly all aspects of Isyn(t), including its

amplitude, kinetics, and reversal potential.43 To overcome this problem, a

technique using voltage jumps can be used to extract the decay time course

under conditions of poor space clamp, or dendritic patching can be used to

reduce the electrotonic distance between the synapse and recording site.44

When measuring Isyn(t) under voltage clamp, individual current compo-

nents (e.g., the AMPAR and NMDAR current components, IAMPAR and

INMDAR) can be cleanly separated using selective antagonists (e.g., APV

or NBQX), and the reversal potential of the currents (e.g., EAMPAR and

ENMDAR) can be established by measuring the current–voltage relation

and correcting for the liquid junction potential of the recording pipette.

The synaptic current component can then be converted to conductance

using the following variant of Eq. (13.2):

Gsyn tð Þ¼ Isyn tð Þ= Vhold�Esyn

� � ð13:3Þ
where Esyn denote the reversal potential of the synaptic conductance under

investigation. The next step is to find a reasonable mathematical expression

for Gsyn(t). The simplest way to do this is to first remove stochastic fluctu-

ations in the amplitude and timing of Gsyn(t) by averaging many EPSCs

recorded under low-frequency conditions (e.g., see Fig. 13.2B) and then

fit one of the waveforms described below (Eqs. 13.4–13.7) to the averaged

EPSC. Later in the chapter, we discuss methods for incorporating stochastic

fluctuations into the mathematical representation of Gsyn(t).
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Exponential functions are typically used to represent Gsyn(t). If compu-

tational overhead is a major consideration, for example, in large-scale net-

work modeling, single-exponential functions can be used since they are

described by only two parameters, the peak conductance gpeak and a single

decay time constant td:

Gsyn tð Þ¼ gpeak e
�t0=td ð13:4Þ

where t0 ¼ t� tj. Here, the arrival of the presynaptic action potential at t¼ tj
leads to an instantaneous jump in Gsyn(t) from 0 to gpeak, after which Gsyn(t)

decays back to zero (note, here and below Gsyn(t)¼0 for t< tj; for consis-

tency, a notation similar to that of Ref. 41 has been used). This mathematical

description ofGsyn(t) may be sufficient if the decay time is much larger than

the rise time. However, if the precise timing of individual synaptic inputs is

important, as in the case of an auditory neuron performing synaptic coinci-

dence detection, then a realistic description of the rise time should be

included in Gsyn(t). In this case, the simplest description is to use the alpha

function, which has an exponential-like rise time course:

Gsyn tð Þ¼ gpeak
t0

t
e1�t0=t ð13:5Þ

where t0 is defined as in Eq. (13.4). The convenience of the alpha function is
that it only contains two parameters, gpeak and t, which directly set the peak
value and the time of the peak. However, the alpha function only fits wave-

forms with a rise time constant (tr) and td of similar magnitude, which is not

usually the case for synaptic conductances. When tr and td are of different
magnitude, then a double-exponential function is more appropriate for

capturing the conductance waveform:

Gsyn tð Þ¼ gpeak �e�t0=tr þ e�t0=td
h i

=anorm ð13:6Þ

Here, the constant anorm is a scale factor that normalizes the expression in

square brackets so that the peak of Gsyn(t) equals gpeak (see Ref. 41 for an

analytical expression of anorm). Still, Eq. (13.6) may not be suitable for some

conductance waveforms. Synaptic AMPAR conductance waveforms, for

example, typically exhibit a sigmoidal rise time course, which can usually

be neglected, but there are certain instances when it is important to accu-

rately capture this component.26,32 In this case, a multiexponential function

with an mxh formalism can be used to fit the conductance waveform45:
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Gsyn tð Þ¼ gpeak 1� e�t0=tr
h ix

d1e
�t0=td1 þd2e

�t0=td2 þ d3e
�t0=td3

h i
=anorm

ð13:7Þ

Here, the first expression in square brackets describes the rise time course,

which, when raised to a power x>1, exhibits sigmoidal activation. The sec-

ond expression in square brackets describes the decay time course and

includes three exponentials for flexibility, one or two of which can be

removed if unnecessary. This function is flexible in fitting synaptic current

or conductance waveforms and has produced good fits to the time course of

miniature EPSCs recorded in cultured hippocampal neurons45 and AMPAR

and NMDAR currents recorded from cerebellar GCs.24,32,46 With nine free

parameters, however, Eq. (13.7) is not only computationally expensive but

also has the potential to cause problems when used in curve-fitting algo-

rithms. We have found the best technique for fitting Eq. (13.7) to EPSCs

is to begin with x fixed at 1 (no sigmoidal activation) and one or two decay

components fixed to zero (d2¼0 and/or d3¼0). If the initial fits under these

simplified assumptions are inadequate, then one by one the fixed parameters

can be allowed to vary to improve the fit. The scale factor anorm can be cal-

culated by computing the product of the expressions in square brackets at

high temporal resolution and setting anorm equal to the peak of the resulting

waveform.

To illustrate how well the different mathematical functions capture syn-

aptic conductance waveforms in practice, we fit Eqs. (13.4)–(13.7) to the

average direct-release AMPAR conductance component of the MF–GC

synapse (computed from currents in Fig. 13.2B) and plotted the fits together

in Fig. 13.2D. The single-exponential function (Eq. 13.4) fit neither the rise

nor decay time course. The two-exponential function (Eq. 13.6) fit well,

except for the initial onset period, which lacked a sigmoidal rise time course.

The alpha function (Eq. 13.5) fit both the rise and decay time course well

since tr and td of the direct-release component are of similar magnitude.

The multiexponential function (Eq. 13.7) showed the best overall fit.

The same comparison was computed for the average spillover AMPAR

conductance component (Fig. 13.2E). This time only the multiexponential

function provided a good fit to both the rise and decay time course. The

two-exponential function also fit well except for a small underestimate of

the decay time course; an additional exponential decay component would

improve this fit. The one-exponential function provided a suitable fit to

the decay time course but not the rise time course. The alpha function fit
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neither the rise or decay time course. Finally, the same comparison was made

for an average NMDAR conductance waveform computed from four MF–

GC connections (Fig. 13.2F). These results were similar to those of the spill-

over AMPAR conductance. Hence, as the results in Fig. 13.2D–F highlight,

Eqs. (13.4)–(13.7) can reproduce aGsyn(t) with different rise and decay time

courses. These differences may or may not be consequential depending on

the computer simulation at hand. In most instances, it is always preferable to

choose the simplest level of description, but it is also important to verify the

simplification does not significantly alter the outcome or conclusions of

the study.

As a general guide, the direct AMPAR current typically has a rise time

course of 0.2 ms and a decay time course between 0.3 and 2.0 ms at phys-

iological temperatures, depending on the AMPAR subunit composition at

the synapse type under investigation.18,47,48 The spillover AMPAR current

typically has a rise time course of 0.6 ms and decay time course of 6.0 ms,

measured at the MF–GC synapse.24 The NMDAR current has the slowest

kinetics, with a rise time course of �10 ms and a decay time course any-

where between 30 and 70 ms, but can even be longer than 500 ms

depending on the NMDAR subunit composition.49,50

3. EMPIRICAL MODELS OF VOLTAGE-DEPENDENT
Mg2þ BLOCK OF THE NMDA RECEPTOR

The voltage dependence of the synaptic AMPAR component can

usually be modeled with the simple linear current–voltage relation described

in Eq. (13.2). In contrast, the synaptic NMDAR component exhibits strong

voltage dependence due to Mg2þ binding inside the receptor’s ion chan-

nel.19 The block is strongest near the neuronal resting potential and becomes

weaker as the membrane potential becomes more depolarized. This unique

characteristic of NMDARs allows them to behave like logical AND gates:

the receptors conduct current only when they are in the glutamate-bound

state ANDwhen the postsynaptic neuron is depolarized. It is this AND-gate

property combined with their high Ca2þ permeability that enables

NMDARs to play such a pivotal role in long-term plasticity, learning and

memory.20,51–53 Here, we consider how to model the electrophysiological

AND-gate properties of synaptic NMDARs.

As mentioned in the previous section, the time course of the NMDAR

component can be captured with a multiexponential function. The key

additional step required for modeling the NMDAR component is the
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nonlinear voltage-dependent scaling of the conductance waveform, here

referred to as ’(V), which is the fraction of the NMDAR conductance that

is unblocked. This scaling can be easily incorporated into a current–voltage

relation as follows:

INMDAR¼ gNMDAR’ Vð Þ V �ENMDARð Þ ð13:8Þ
Typically, a Boltzmann function is used to describe ’(V), which takes on

values from 0 at the most hyperpolarized potentials (all blocked) to 1 at

the most depolarized potentials (all unblocked), and is commonly written as:

’ Vð Þ¼ 1

1þe� V�V0:5ð Þ=k ð13:9Þ

where V0.5 is the potential at which half the NMDAR channels are blocked

and k is the slope factor that determines the steepness of the voltage depen-

dence around V0.5. While the Boltzmann function is simple and easy to use,

its free parameters V0.5 and k do not directly relate to any physical aspect of

the Mg2þ blocking mechanism. The two-state Woodhull formalism,54 in

contrast, is derived from a kinetic model of extracellular Mg2þ block, in

which case its free parameters have more of a physical meaning. In this

two-state kinetic model, an ion channel is blocked when an ion species,

in this case extracellular Mg2þ, is bound to a binding site somewhere inside

the channel, or open when the ion species is unbound (Fig. 13.3A). If the

rate of binding and unbinding of the ion species is denoted by k1 and k�1,

respectively, then ’(V) will equal:

’ Vð Þ¼ k�1

k�1þk1
¼ 1

1þk1=k�1

ð13:10Þ

where

k1¼ Mg2þ
� �

o
K1e

�dfV=2

k�1¼K�1e
dfV=2

f¼ zF=RT

Here, K1 and K�1 are constants, d is the fraction of the membrane voltage

that Mg2þ experiences at the blocking site, z is the valence of the blocking

ion (here, þ2), F is the Faraday constant, R is the gas constant, and T is the

absolute temperature. Dividing through terms, Eq. (13.10) can be expressed

in a more familiar notation that includes a dissociation constant (Kd):
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Figure 13.3 Weak Mg2þ block in GluN2C-containing NMDARs. (A) Current–voltage rela-
tion of an NMDAR current from a mature GC (black) fit to Eq. (13.8) (ENMDAR¼0 mV)
where ’(V) was defined by either a two-state kinetic model (blue; Eq. 13.11) or a
three-state kinetic model that includes Mg2þ permeation (red; Eq. 13.12). The latter
kinetic model produced the better fit. Kinetic models are shown at top. (B) Percent
of unblocked NMDARs,’(V), from the three-state kinetic model fit in (A) (red), compared
to ’(V) derived from fits to the same model for another data set of mature GCs (purple;
data from Ref. 46) and immature GCs (black; data from Ref. 50). At nearly all potentials,
NMDARs from mature GCs show weaker Mg2þ block than those from immature GCs.
This difference is presumably due to the developmental maturation switch in GCs from
GluN2A/B-containing receptors to GluN2C-containing receptors, discussed in text.
(C) IAF simulations (Eq. 13.20) of a GC with immature (top, þGluN2A/B) and mature
(bottom, þGluN2C) NMDARs, using ’(V) functions in (B) (black and red, respectively),
demonstrating the enhanced depolarization and spiking under mature NMDAR condi-
tions. Identical simulations were repeated with GNMDAR¼0 (yellow) and GAMPAR¼0
(green) to compare the contribution of AMPARs and NMDARs to depolarizing the
membrane. GAMPAR consisted of a simulated direct and spillover component, both with
depression, as described in Fig. 13.5F. GNMDAR was simulated with both depression and
facilitation, as described in Fig. 13.5G. The peak value of the GNMDAR waveform equaled
that of the GAMPAR waveform, giving an amplitude ratio of unity, which is in the phys-
iological range for GCs. The total synaptic current consisted of the sum of four

318 Jason S. Rothman and R. Angus Silver



’ Vð Þ¼ 1

1þ Mg2þ½ �o=Kd

ð13:11Þ

Kd ¼Kd0e
dfV

where Kd0 is the dissociation constant at 0 mV and equals K�1/K1. This

equation, like the Boltzmann function (Eq. 13.9), has two free parameters,

Kd0 and d. However, unlike the Boltzmann function, both parameters now

directly relate to the Mg2þ blocking mechanism: Kd0 quantifies the strength

or affinity of Mg2þ binding and d quantifies the location of the Mg2þ bind-

ing site within the channel. On the other hand, Eqs. (13.9) and (13.11) are

formally equivalent since their free parameters are directly convertible via

the following relations: k¼ (df)�1 and V0.5¼df � ln([Mg2þ]o/Kd0). Under

physiological [Mg2þ]o, Eq. (13.11) is also equivalent to a more complicated

three-state channel model with an open, closed, and blocked state.55

While the simple Boltzmann function and the equivalent two-state

Woodhull formalism are often used to describe’(V), the two functions have

not always proved adequate in describing experimental data. Single-channel

recordings of NMDAR currents, for example, have indicated there are actu-

ally two binding sites for Mg2þ: one that binds external Mg2þ and one that

binds internal Mg2þ.56–60 Moreover, there are indications Mg2þ permeates

through the NMDAR channel.19,57 Hence, more complicated expressions

of ’(V) have been adopted. The three-state Woodhull formalism depicted

independent Isyn, each representing a different MF input. Spike times for each MF input
were generated for a constant mean rate of 60 Hz (Eq. 13.16), producing a total MF input
of 240 Hz. Total Isyn also contained the following tonic GABA-receptor current not dis-
cussed in this chapter: IGABAR¼0.438(Vþ75). IAF membrane parameters matched the
average values computed from a population of 242 GCs: Cm¼3.0 pF, Rm¼0.92 GO,
Vrest¼�80 mV. Action potential parameters were: Vthresh¼�40 mV (gray dashed line),
Vpeak¼32 mV, Vreset¼�63 mV, tAR¼2 ms. Action potentials were truncated to�15 mV
for display purposes. (D) Average output spike rate of the IAF GC model as shown in (C)
as a function of total MF input rate for immature (bottom left) andmature (bottom right)
NMDARs, again demonstrating the enhanced spiking caused by GluN2C subunits.
A total of 242 simulations were computed using Cm, Rm, Vrest values derived from a data
base of 242 real GCs (top distributions, red lines denote average population values), with
the average output spike rate plotted as black circles. Red line denotes one GC simu-
lation whose Cm, Rm, Vrest matched the average population values shown at top, which
are the same parameters used in (C). Note, the output spike rate of this “average GC”
simulation is twice as large as the average of all 242 GC simulations due to the nonlinear
behavior of the IAF model. Data in this figure is from Schwartz et al.22 with permission.
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in Fig. 13.3A, for example, has been used to describe Mg2þ block.57,59 This

model includes Mg2þ permeation through the NMDAR channel, described

by k2, which is assumed to be nonreversible (i.e., k�2¼0), in which case

’(V) equals:

’ Vð Þ¼ k�1þk2

k�1þk2þk1
¼ 1

1þk1= k�1þk2ð Þ ð13:12Þ

k2¼K2e
�d2fV=2

This equation reduces to Eq. (13.11) but with Kd as follows:

Kd¼Kd0e
d1þd�1ð ÞfV=2þKp0e

d1�d2ð ÞfV=2 ð13:13Þ
Kp0¼K2=K1

Here, separate d have been used for each k (d1, d�1, d2) to conform to the

more general notation of Kupper and colleagues. If the original Woodhull

assumptions are used (d1¼d�1¼d and d2¼1�d), then Eq. (13.13)

reduces to:

Kd ¼Kd0e
dfV þKp0e

2d�1ð ÞfV=2 ð13:14Þ
which has three free parameters: d, Kd0, and Kp0. In previous work, we

found this latter expression of ’(V) (Eqs. 13.12 and 13.13) gives a better

empirical fit to the Mg2þ block of NMDARs at the MF–GC synapse than

the two-stateWoodhull formalism (Fig. 13.3A; Ref. 22). At this synapse, the

Mg2þ block of NMDARs is incomplete at potentials near the resting poten-

tial of mature GCs (Fig. 13.3B), presumably due to the presence of GluN2C

subunits.21,36,37 Using simple models as described in this chapter, we were

able to show the incomplete Mg2þ block at subthreshold potentials boosts

the efficacy of low-frequency MF inputs by increasing the total charge

delivered by NMDARs, consequently increasing the output spike rate

(Fig. 13.3C and D). Hence, these modeling results suggested the incomplete

Mg2þ block of NMDARs plays an important role in enhancing low-

frequency rate-coded signaling at the MF–GC synapse.

Characterization of the Mg2þ block of NMDARs is still ongoing.

Besides the potential existence of two binding sites, and Mg2þ permeation,

it has been shown that Mg2þ block is greatly affected by permeant mono-

valent cations.60,61 This latter finding has the potential to resolve a long-

standing paradox referred to as the “crossing of d’s,” where the two internal

and external Mg2þ binding site locations (i.e., their d’s), estimated using the
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Woodhull formalisms described above, puzzlingly cross each other within

the NMDAR.61 Other details of Mg2þ block have been added by studies

investigating the response of NMDARs to long steps of glutamate applica-

tion.62,63 These studies have revealed multiple blocked and desensitization

states, and slowMg2þ unblock due to inherent voltage-dependent gating, all

of which are best described by more complicated kinetic-scheme models.

Hence, given the added complexities from these more recent studies, it is

all the more apparent that the often-used equations for’(V) described above

are really only useful for providing empirical representations of the blocking

action of Mg2þ (i.e., for setting the correct current–voltage relation

described in Eq. 13.8), rather than characterizing the biophysical mecha-

nisms of the Mg2þ block. In this case, parameters for ’(V) are best chosen

to give a realistic overall current–voltage relation of the particular NMDAR

under investigation. Because the voltage dependence of NMDARs is

known to vary with age, temperature, subunit composition and expression

(i.e., native vs. recombinant receptors), care must be taken when

selecting these parameters. Ideally, one should select parameters from

studies of NMDARs in the neuron of interest, at the appropriate age and

temperature.

4. CONSTRUCTION OF PRESYNAPTIC SPIKE TRAINS
WITH REFRACTORINESS AND PSEUDO-RANDOM
TIMING

To simulate the temporal patterns of activation that a synapse is likely

to experience in vivo, it is necessary to construct trains of discrete events that

can be used to activate model synaptic conductance events, Gsyn(t), as

described in Eqs. (13.4)–(13.7), at specific times (i.e., tj). These trains can

then be used to mimic the timing of presynaptic action potentials as they

reach the synaptic terminals. Real presynaptic spike trains can exhibit a wide

range of statistics. The statistical properties of the spike trains reflect the man-

ner in which information is encoded. Often, sensory information conveyed

by axons entering the CNS is encoded as firing rate, and the interval

between spikes has a Poisson-like distribution.64–66 Other types of sensory

input may signal discrete sensory events as bursts of action potentials.67 In

sensory cortex, information is typically represented as a sparse code and

the firing rate of individual neurons is low on average (<1 Hz 68). The inter-

spike interval of cortical neurons can exhibit a higher variance than expected

for a Poisson process where the variance equals the mean. Here, we describe
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how to generate spike trains with specific statistics; however, another

approach would be to use spike times measured directly from single-cell

in vivo recordings.

To compute an arbitrary train of random spike times tj (j¼1, 2, 3, . . .)
with instantaneous rate l(t), a series of interspike intervals (Dtj) can be gen-

erated from a series of random numbers (uj) uniformly distributed over the

interval (0, 1] by solving for Dtj in the following equation69,70:

� ln uj
� �¼ ðtj�1þDtj

tj�1

l sð Þds ð13:15Þ

where s is the integration variable. The right-hand side of this equation rep-

resents the cumulative distribution function of finding a spike after tj�1, in

which case l(t) is the probability density function. Since l(t) can be any arbi-
trary function of time, Eq. (13.15) is extremely flexible in generating any

number of random spike trains. Here, we outline a few examples.

First, we consider the simplest case of generating a random spike train

with constant instantaneous rate: l(t)¼l0. In this case, Eq. (13.15)

reduces to:

Dtj ¼� ln uj
� �

=l0 ð13:16Þ
Plugging a series of random numbers uj into Eq. (13.16) results in a series of

Dtj with exponential distribution (i.e., Poisson) and mean 1/l0. Since the

solution contains no memory of the previous spike time (i.e., there are

no terms containing tj�1), Dtj can be computed independently and then

converted to a final tj series.

Next, we consider the case of generating a random spike train with an

exponential instantaneous rate of decay: l(t)¼l0 exp(�t/t). In this case,

Eq. (13.15) reduces to:

Dtj ¼�t ln 1þ ln uj
� �

tl t¼ tj�1

� �
" #

ð13:17Þ

Unlike Eq. (13.16), this solution contains memory of the previous spike in

the term l(t¼ tj�1), in which case values for Dtj and tj must be computed in

consecutive order.

One problem with Eqs. (13.16) and (13.17) is that they do not take into

account the spike refractoriness of a neuron, which can be on the order of

1–2 ms at physiological temperatures. A solution to this problem is to reject
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any Dtj that are less than the absolute refractory period (tAR) or evaluate the
integral in Eq. (13.15) from tj�1þtAR to tj�1þDtj. However, both proce-

dures will increase the average of Dtj in which case the final instantaneous

rate of the tj series will not match l(t). To produce a tj series with instanta-

neous rate matching l(t), one can correct l(t) for refractoriness via the

following equation71:

L tð Þ¼ 1

l tð Þ�1�tAR
ð13:18Þ

where l(t)�1>tAR, which should be the case if both l(t) and tAR are

derived from experimental data. As a simple example, if we consider the case

of a constant instantaneous rate, where l(t)¼l0¼0.25 kHz and tAR¼1 ms,

then L(t)¼0.333 kHz. Another simple example is shown in Fig. 13.4A1,

where 200 spike trains (four shown at top) were computed for l(t) that
exhibits an exponentially decaying time course (bottom, solid red line)

and tAR¼1 ms. L(t), the corrected rate function used to compute the spike

trains, is plotted as the dashed red line, which only shows significant devi-

ation from l(t) at rates above 100 Hz. Computing the peri-stimulus time

histogram (PSTH, noisy black line) from the 200 spike trains confirmed

the instantaneous rate of the trains matched that of l(t), and computing

the interspike interval histogram (ISIH; Fig. 13.4A2) confirmed the spike

intervals had an exponential distribution with tAR¼1 ms.

A more complicated scenario arises when tAR is followed by a relative

refractory period (tRR). In this case, one will need to multiply the instan-

taneous rate by a probability density function for refractoriness,H(t), similar

to a hazard function, which takes on values between 0 and 1. A simple H(t)

would be one that starts at 0 and rises exponentially to 1, in which case a tj
series could be computed via the following:

� ln uj
� �¼ ðtj�1þDtj

tj�1þtAR
L sð ÞH sð Þds ð13:19Þ

L tð Þ¼ 1

l tð Þ�1�tAR� tRR

H tð Þ¼ 1�e�t0=tRR

where t0 ¼ t� tj�1�tAR. Examples of 200 spike trains computed via

Eq. (13.19) are shown in Fig. 13.4B1 (top), where l(t) was a half-wave
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rectified sinusoid (solid red line), tAR¼0.5 ms and tRR¼0.5 ms. Also

shown is L(t) (dashed red line) which again only shows significant deviation
from l(t) at rates above 100 Hz. Computing the PSTH of the 200 spike

trains again confirmed the instantaneous rate matched that of l(t), and com-

puting the ISIH confirmed the spike intervals had an exponential distribu-

tion with tAR¼0.5 ms and tRR¼0.5 ms (Fig. 13.4B2).

Figure 13.4 Simulated spike trains with refractoriness and pseudorandom timing. (A1)
Trains of spike event times (top) computed for an instantaneous rate function l(t) with
exponential decay time constant of 150 ms (bottom, solid red line) and absolute
refractory period (tAR) of 1 ms. To compute the trains, a refractory-corrected rate func-
tion L(t) (dashed red line) was first derived from Eq. (13.18) and then used in the
integral of Eq. (13.15) to compute the spike intervals in sequence. The PSTH (black,
2-ms bins) computed from 200 such trains closely matches l(t). (A2) Interspike interval
histogram (ISIH) computed from the same 200 trains in (A1), showing the 1 ms abso-
lute refractory period. The overall exponential decay of the ISIH is a hallmark sign of a
random Poisson process. (B1) and (B2) Same as (A1) and (A2) except l(t) was a
half-wave rectified sinusoid with 250 ms period, and refractoriness was both absolute
and relative: tAR¼0.5 ms and tRR¼0.5 ms. Intervals were computed via Eq. (13.19).
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The above solutions for a simple l(t) described in Eqs. (13.16) and

(13.17) were relatively easy to compute since Eq. (13.15) could be solved

analytically. If an analytical solution is not possible, however, then

Eq. (13.15) (or Eq. 13.19) must be obtained numerically with suitably small

time step ds. Ideally, this can be achieved using an integration routine with

built-in mechanism to halt integration based on evaluation of an arbitrary

equality. If the integration routine does not have such a built-in halt mech-

anism, then integration will have to proceed past t¼ tj�1þDtj, perhaps to a

predefined simulation end time, and Dtj computed via a search routine that

evaluates the equality defined in Eq. (13.15). To improve computational

efficiency, an iterative routine can be written which computes the integra-

tion over small chunks of time, and the search routine implemented after

each integration step. The length of the consecutive integration windows

could be related to L(t¼ tj�1), such as 3/L.

5. SYNAPTIC INTEGRATION IN A SIMPLE
CONDUCTANCE-BASED INTEGRATE-AND-FIRE
NEURON

Once we have built a train of presynaptic spike times (tj) and synapses

with realistic conductance waveforms (GAMPAR andGNMDAR) and current–

voltage relations (IAMPAR and INMDAR), we are well on our way to simu-

lating synaptic integration in a simple point neuron like the GC, which

is essentially a single RC circuit with a battery. The simplest neuronal inte-

grator is the integrate-and-fire (IAF) model.72 Most modern versions of the

IAF model act as a leaky integrator with a voltage threshold and reset mech-

anism to simulate an action potential.73,74 The equation describing the

subthreshold voltage of such a model is as follows:

Cm

dV

dt
¼V �Vrest

Rm

þ Isyn V , tð Þ ð13:20Þ

whereCm,Rm, andVrest are the membrane capacitance, resistance, and rest-

ing potential, and Isyn(V,t) is the sum of all synaptic current components,

such as IAMPAR and INMDAR (e.g., Eqs. 13.2 and 13.8) which are usually

both voltage and time dependent. Spikes are generated the moment integra-

tion of Eq. (13.20) results in a V greater than a predefined threshold value

(Vthresh). At this time, integration is halted andV is set to the peak value of an

action potential (Vpeak) for one integration time step. V is then set to a reset

potential (Vreset) for a period of time defined by an absolute refractory period
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(tAR) after which integration of Eq. (13.20) is resumed. To produce realistic

spiking behavior, the parameters can be tuned to match the particular neu-

ron under investigation. Vthresh, Vpeak, and Vreset, for example, can be set to

the average onset inflection point, peak value, and minimum after-

hyperpolarization of experimentally recorded action potentials. tAR can

be set to the minimum interspike interval observed during periods of high

spike activity, and further tuned using input–output curves (e.g., matching

plots of spike rate vs. current injection for experimental and simulated data).

Due to the complexity of Isyn(V,t), the solution of Eq. (13.20) will most

likely require numerical integration. The integration can be implemented

in a similar manner as that described for l(t) above, using a built-in integra-

tion routine to solve Eq. (13.20) over small chunks of time, and searching for

V the moment it exceeds Vthresh, or using an integration routine with built-

in mechanism to halt integration once V exceeds Vthresh. Usually, all of the

above procedures can be implemented using few lines of code.

Due to their electrically compact morphology and simple subthreshold

integration properties, GCs are particularly well suited for modeling with an

IAF modeling approach.22,46 Example simulations of an IAFmodel tuned to

match the firing properties of an average GC can be found in

Fig. 13.3C. Here, the model was driven by Isyn(V,t) that contained either

a mixture of IAMPAR and INMDAR or the two currents in isolation. To sim-

ulate the convergence of four MF inputs, four different trains of Isyn(V,t)

with independent spike timing were computed and summed together before

integration of Eq. (13.20). Because repetitive stimulation of the MF–GC

synapse at short time intervals often results in depression and/or facilitation

of IAMPAR and INMDAR, plasticity models of the two currents were included

in the simulations. These plasticity models are described in detail in the next

section.

One consideration often overlooked in simulations of synaptic integra-

tion is the variability inCm,Rm, andVrest. We have found, for example, that

the natural variability of these parameters in GCs can produce dramatically

different output spike rates for a given synaptic input rate, as shown in

Fig. 13.3D (gray curves). Moreover, due to the nonlinear nature of spike

generation, using average values of Cm, Rm, and Vrest in a simulation

(red) does not replicate the average output behavior of the total population

(black): the spike rate of the “average GC” simulation in Fig. 13.3D is twice

the average population spike rate. Hence, control simulations that include

variation in Cm, Rm, and Vrest should be considered when simulating syn-

aptic integration.
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If the neuron under investigation has extended dendrites that are not

electrically compact, then a multicompartmental model may be required.

In this case, Eq. (13.20) can be used to describe the change in voltage within

the various compartments where synapses are located, with an additional

term on the right-hand side of the equation denoting the flow of current

between individual compartments. Spike generation is then computed as

described above but occurs only in the compartment designated as the soma.

Also, an additional current due to spike generation can be added to the soma.

Further details about multicompartment IAF modeling can be found in

Gerstner and Kistler.38 More often than not, however, multicompartmental

models are simulated with Hodgkin–Huxley-style Naþ and Kþ conduc-

tances to generate realistic action potentials.75 Popular simulation packages

developed to solve these more complex multicompartmental models with

Hodgkin–Huxley-style conductances include NEURON and GENESIS,

which are discussed further below.

6. SHORT-TERM SYNAPTIC DEPRESSION
AND FACILITATION

So far, we have only considered the simulation of fixed amplitude syn-

aptic conductances recorded under basal conditions. At synapses with a rel-

atively high release probability, repetitive stimulation at short time intervals

often results in depression of the postsynaptic response (see, e.g., Fig. 13.2C).

This kind of synaptic depression was first described by Eccles et al.8 for

endplate potentials at the NMJ and has since been described for synapses

in the CNS. Because recovery from synaptic depression takes a relatively

short time, on the order of tens of milliseconds to seconds, it is referred

to as short-term depression, distinguishing it from the longer-lasting forms

of depression, including long-term depression that is believed to play a cen-

tral role in learning and memory. Here, we refer to short-term depression as

simply depression or synaptic depression.

Since the discovery of synaptic depression, numerous studies have sought

to determine its underlying mechanisms and potential roles in neural signal-

ing (for review, see Refs. 76,77). Often these studies have employed math-

ematical models to test and verify their hypotheses. The first model of

presynaptic depression was described by Liley and North in 1953, before

the discovery of synaptic vesicles. At the time, depression was thought to

reflect a depletion of a finite pool of freely diffusing neurotransmitter avail-

able for release, and recovery from depression was thought to reflect a
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replenishment of the depleted pool, via synthesis from a freely diffusing

chemical precursor. This explanation fit well with the observation that

increasing the initial release of neurotransmitter produced a larger degree

of depression, and the recovery from depression followed an exponential

time course. Liley and North formalized this hypothesis by a simple math-

ematical treatment of synaptic transmission at the NMJ, known as a “deple-

tion model,” whereby a size-limited pool of readily releasable

neurotransmitter (N) is in equilibrium with a large store of precursor (Ns)

with forward and backward rate constants k1 and k�1 (Fig. 13.5A). In

response to stimulation of the nerve, say at time tj, a fraction (P) of N is

released into the synaptic cleft, disturbing the equilibrium with Ns. The

change of N with respect to time after the stimulus can then be described

by the following differential equation:

dN

dt
¼ k1Ns�k�1N ð13:21Þ

IfNs is relatively large, one can assumeNs is constant and Eq. (13.21) has the

following solution:

N ¼N1þ Njþe�N1
� �

e� t�tjð Þ=tr ð13:22Þ
whereN1¼Nsk1/k�1 and tr¼1/k�1. Here,N1 is the steady-state value of

N, tr is the recovery time constant, and Njþe is the value of N immediately

after transmitter release at time tj. This solution means that, after a sudden

depletion of N due to a stimulus, N will exponentially increase from Njþe

to N1 with time constant tr. By comparing their experimental data to pre-

dictions of their mathematical model, Liley and North were able to estimate

the steady-state value of P was 0.45, as well as reveal subtle signs of poten-

tiation during a short train of stimuli, a conditioning tetanus, which they

speculated was due to a brief period of temporarily raised P. At the time,

such facilitation had long been reported8 and was thought to be due to

an increase in size of the nerve action potential, or an increase in the extra-

cellular Kþ concentration. Today, facilitation is thought to be largely due to

a rise in the intracellular Ca2þ concentration ([Ca2þ]i) as described

further below.

Subsequent to Liley and North’s study, Betz78 modified the depletion

model to account for vesicular release. More recently, Heinemann et al.79

added to the depletion model a pulsatile increase in [Ca2þ]i leading to a steep
increase in P from a near zero value. While the latter addition made the
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Figure 13.5 Modeling short-term depression and facilitation. (A) Original depletion
model of Liley andNorth9 describing release of freely diffusing transmitter (N).N is in equi-
libriumwith a large store of precursor molecules (Ns), governed by forward and backward
rate constants k1 and k�1. The arrival of an action potential causes a rise in [Ca2þ]i, trig-
gering a fraction (P) of N to be released (NP) into the synaptic cleft (red), disrupting the
balance between N and Ns. N recovers back to its steady-state value (N1) with an expo-
nential time course (tr), where N1 and tr are set by k1 and/or k�1. (B) A modern version of
the depletion model with a large store of synaptic vesicles (Ns, gray circles) and a fixed
number of vesicle release sites (NT, blue), where N now represents the number of vesicles
docked at a release site and are therefore readily releasable (orange circle). The arrival of
an action potential now triggers a certain fraction of the readily releasable vesicles to be
released (NP), freeing release sites. The number of free release sites at any given time is
equal to NT�N. Variations of this model include a k1 that is dependent on residual [Ca

2þ]i
(red star), in which case [Ca2þ]i is explicitly simulated, and the inclusion of a backwards
rate constant k�1 (gray arrow) representing the undocking of a vesicle, that is, the return

(Continued)
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depletion model more realistic, it introduced the added complication of sim-

ulating the time dependence of [Ca2þ]i. The added complication proved use-

ful, however, in that Heinemann and colleagues were able to explore the

consequences of adding a Ca2þ-dependent step to the process of vesicle

replenishment (i.e., k1), as supported by experimental evidence at the time.

One such consequencewas an increase in the number of readily releasable ves-

icles during a spike-plateau Ca2þ transient, thereby enhancing secretion dur-

ing subsequent stimuli. More recent experimental evidence supports such a

link between increased levels of [Ca2þ]i and enhanced vesicle replenishment

(k1).
80–84

As noted by Heinemann et al.79, k�1 was introduced into their model in

order to limit the steady-state value of readily releasable vesicles (N1). An

alternative approach to limit N1, they noted, would be to allow a finite

number of vesicle release sites at the membrane (NT), and let N denote

the number of release sites filled with a vesicle, or equivalently the number

of readily releasable vesicles (Fig. 13.5B). In this case, the number of empty

Figure 13.5—Cont'd of N to Ns. (C) A more recent version of the depletion model, sim-
ilar to that in (B), has two pools of readily releasable vesicles (N1 and N2) with low- and
high-release probabilities, respectively (P1 and P2). The difference in probabilities is
related to the distance vesicles in pools N1 and N2 are from VGCCs, where vesicles in
pool N2 are more distant. Here, the model includes a maturation process where N2

emerges from N1 at a rate set by k2, but some models have N2 emerging from Ns in par-
allel with N1. In somemodels, k2 is dependent on residual [Ca

2þ]i (red star), in which case
[Ca2þ]i is explicitly simulated. Only the second pool has a fixed number of vesicle release
sites (NT2). (D) Synaptic model with depression implemented using RP recursive algo-
rithm described in Eqs. (13.28)–(13.32) (tr¼20 ms; R¼N/NT). The time evolution of R
and P are shown at top (blue and red), where P1¼0.4. Since there is no facilitation
(DP¼0), P is constant. At the arrival of an action potential at tj, the fraction of vesicles
released (Re) is computed: Re¼RP (gray circles). Re is then used to scale a synaptic con-
ductance waveform Gsyn(t¼ tj) (Eq. 13.30) and also subtracted from R (Eq. 13.31). The
time evolution of the sum of all Gsyn(t¼ tj) is shown at the bottom (gray). (E) The same
simulation in (D), except the synaptic model includes facilitation (DP¼0.5, tf¼30 ms).
For comparison, Re and the sumof allGsyn(t¼ tj) are plotted in black (þF) alongwith their
values in (D) (�F, gray). (F) Fit of a synaptic model with depression (yellow) to a 30 Hz
MF–GC AMPAR conductance train (black). The fit consisted of the sum of two separate
components, the direct and spillover components, where each component had its own
depression parameters. Parameters for the fit can be found in Schwartz et al.22 (G) Same
as (F) but for a corresponding 30 Hz MF–GC NMDAR conductance train. This time the fit
(green) consisted of a single component that had depression and facilitation. Scale
bars are for (F) and (G), with two different y-scale values denoted on the left and right,
respectively. Data in (F) and (G) is from Schwartz et al.22 with permission.
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release sites will equal NT�N, and the rate at which the empty release sites

are filled will equal k1(NT�N). Hence, Eq. (13.21) can be rewritten as:

dN

dt
¼ k1 NT�Nð Þ ð13:23Þ

This equation has the same solution defined in Eq. (13.22) exceptN1¼NT

and tr¼1/k1. Because NT now directly defines N1, k�1 is no longer nec-

essary. Although the backward reaction defined by k�1 may very well exist,

its rate is usually presumed small and neglected. In most depletion models,

however, it is customary to express Eq. (13.23) with respect to the fraction of

release sites filled with a vesicle (i.e., N/NT), also known as site occupancy,

which is assumed to be unity under resting conditions (i.e., low stimulus fre-

quencies). To be consistent with these other models, therefore, we define a

fractional “resource” variable R¼N/NT. Substituting terms, Eq. (13.23)

becomes:

dR

dt
¼ k1 1�Rð Þ ð13:24Þ

which has the following solution based on Eq. (13.22):

R¼ 1þ Rjþe�1
� �

e� t�tjð Þ=tr ð13:25Þ
where tr¼1/k1. This is the expression one often sees in depletion models

(e.g., Ref. 85); however, sometimes R is denoted as D,86 x,87 n,88 or as

the ratio N/NT.
80

To simulate vesicle release, many depletion models treat the process of

spike generation, Ca2þ channel gating and vesicle release as instantaneous

events (Fig. 13.5B, red P). To do this, one first computes the fraction of

the resource of vesicles released (Re) at the time of a stimulus: Re¼RP.

Next, Re is used to compute the amplitude of the postsynaptic response,

for example: gpeak¼QNTRe (see Eqs. 13.4–13.7), whereQ is the peak quan-

tal conductance. Finally, Re is subtracted from R (R!R�Re) increasing

the number of empty release sites. A few variations in this release algorithm

are worth noting. First, in some models, the latter decrement in R is

expressed with respect to a depression scale factor (D). However, the result

is the same since D can be expressed as D¼1�P, in which case,

R!RD¼R(1�P)¼R�Re. Second, in some models, a synaptic delay is

added to the postsynaptic response. However, if the same delay is added

to each response, then the result is the same with only an added time shift.
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Third, in some models, the release sites become inactive after a vesicle is

released.87 This requires the addition of an inactive state, after release and

before the empty state. Transition from the inactive state to the empty state

(i.e., recovery from inactivation) is then determined by an extra time con-

stant. Hence, in this three-state model, the recovery ofNwill have a double-

exponential time course. Because of the added complexity, differential

equations of the three-state model will most likely have to be solved using

numerical methods. Finally, in the more detailed models that simulate

[Ca2þ]i, such as the Heinemann model discussed above, the stimulus (i.e.,

action potential) will often cause an instantaneous increase in [Ca2þ]i
followed by a slower decay. Since P is a nonlinear function of [Ca2þ]i, it
may remain elevated above zero for some time following an action potential,

causing a delayed component of vesicular release. This scenario therefore

requires the added complication of calculating release continuously as a

function of [Ca2þ]i, which may have to be solved via numerical methods.

More recent studies investigating vesicle release in the calyx of Held42

and cerebellar MF30 have reported success in replicating experimental data

using a depletion model with two pools of releasable vesicles (N1 and N2),

one with a low release probability (P1, reluctantly releasable), the other with

a high release probability (P2, readily releasable; Fig. 13.5C). In this two-

pool model, the size of N1 is not limited by a fixed number of release sites,

but rather is limited by the forward and backward rate constants k1 and k�1.

The size of N2, on the other hand, is limited by a finite number of release

sites (NT2). As depicted in Fig. 13.5C,N2 emerges fromN1 via a maturation

process that is Ca2þ independent (i.e., k2). However, Trommershäuser and

colleagues modeled N2 emerging from Ns in parallel with N1, where k2 was

Ca2þ dependent. The success of both models in replicating experimental

data may indicate true differences in the synapse types under investigation,

or may indicate a need for more experimental data to constrain this type of

model. To simulate two different release probabilities, P1 and P2 are defined

according to a biophysical model that places the vesicles of pools N1 and N2

at different distances from VGCCs (Ref. 42; see also Ref. 89). The result is

individual [Ca2þ]i expressions for each pool of vesicles, which adds to the

complexity of this type of depletion model.

As noted above, Liley and North9 observed signs of facilitation at the

NMJ which they attributed to a brief period of temporarily raised P after

stimulation of the presynaptic terminal. Today, there is considerable evi-

dence the raised P is due to an accumulation of residual Ca2þ in the synaptic

terminal following an action potential (for review, see Ref. 77). Although
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facilitation may well be a universal characteristic of all chemical synapses, it

has not always been readily apparent at some synapse types, for example, the

climbing fiber synapse.80 The lack of observable facilitation at some synapse

types is thought to be due to a presence of strong depression that dominates

over facilitation (due to a higher release probability), or the presence of intra-

cellular Ca2þ buffers that significantly speed the decay of residual [Ca2þ]i, or
some molecular difference in the vesicle release machinery. The lack of

observable facilitation at some synapse types has meant facilitation has not

always been included in depletion models. However, for those depletion

models that have included facilitation, the typical implementation of facil-

itation has been to instantaneously increase P after the arrival of an action

potential and let P decay back to its steady-state value. In this case, the

change of P with respect to time after an action potential can be described

by the following differential equation:

dP

dt
¼P1�P

tf
ð13:26Þ

which has the following solution:

P¼P1þ Pjþe�P1
� �

e� t�tjð Þ=tf ð13:27Þ

where P1 is the steady-state value of P (the probability of release during rest-

ing conditions, sometimes referred to as P0), tf is the time constant for recov-

ery from facilitation, and Pjþe is the value of P immediately after an action

potential at time tj. More complicated models that simulate Ca2þ dynamics

will equate P as a function of [Ca2þ]i.
If the differential equations that describe synaptic plasticity have exact

analytical solutions, then a simple recursive algorithm can be used to com-

pute a solution for a given spike tj series. As a simple example, if the change

in R and P after tj are described in Eqs. (13.25) and (13.27), then a solution

can be obtained by executing the following three steps at each spike time tj
(j¼1, 2, 3, . . .). In step 1, values for R and P at the arrival of a spike at tj are

computed via the following equations derived from Eqs. (13.25) and

(13.27):

Rj�e¼ 1þ Rj�1þe�R1
� �

e�Dtj=tr ð13:28Þ

Pj�e¼P1þ Pj�1þe�P1
� �

e�Dtj=tf ð13:29Þ

333Data-Driven Modeling of Synaptic Transmission and Integration



where j denotes the current spike, j�1 is the previous spike, and Dtj is the
inter-spike time (Dtj¼ tj� tj�1). Since both R and P change instantaneously

at tj, it is necessary to distinguish their values immediately before and after a

spike. Here, this is accomplished with the notation�e andþe, respectively.
Note that for the first spike (j¼1) Pj�e¼P1. In step 2, values for R and P

derived from step 1 are used to compute the amplitude of the postsynaptic

response at tj:

gpeak ¼QNTRj�ePj�e ð13:30Þ
gpeak can then be used in Eqs. (13.4)–(13.7). In step 3, values for R and P

immediately after the arrival of a spike are computed:

Rjþe¼Rj�e 1�Pj�e
� � ð13:31Þ

Pjþe¼Pj�eþDP 1�Pj�e
� � ð13:32Þ

where DP is a facilitation factor with values between 0 and 1. Varela et al.86

use a slightly different approach to step 3 that disconnects the usage depen-

dency of N from P:

Rjþe¼Rj�eDR ð13:33Þ
Pjþe¼Pj�eþDP ð13:34Þ

where DR and DP are their depression (D) and facilitation (F) factors. Equa-

tion (13.34) is similar to Eq. (13.32) in spirit; however, Pjþe in Eq. (13.34)

has the potential to grow without bound at high spike rates, in which case

gpeak in Eq. (13.30) can become larger thanQ �NT, the maximum amplitude

possible forNT release sites. Pjþe in Eq. (13.32), on the other hand, is limited

to going no higher than 1, and therefore gpeak no higher than Q �NT.

An example of aGsyn(t) train computedwith the aboveRP recursive algo-

rithm is shown in Fig. 13.5D (bottom, gray), along with the time evolution of

R (top, blue), P (red), and RP (gray circles). In this example, there is no facil-

itation (DP¼0) so P is constant. To show the effects of facilitation, the same

Gsyn(t) train is shown in Fig. 13.5E now with facilitation (bottom, black;

DP¼0.5, tf¼30 ms). Comparison of Gsyn(t) with and without facilitation

(black vs. gray) shows the enhancement of gpeak due to facilitation. However,

the comparison also shows the signs of facilitation in this example are subtle

and might not be readily apparent by visual inspection of the Gsyn(t) train.

A more realistic example of a Gsyn(t) train computed with the above RP

recursive algorithm is shown in Fig. 13.5F. Here, parameters for R and P

were optimized to fit a 30 Hz GAMPAR train computed from recordings
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from four GCs (black). BecauseGAMPAR of GCs contains a direct and spill-

over component (Fig. 13.2B), the fit (yellow) consisted of two separate

components simultaneously summed together. Furthermore, because a

good fit could be achieved without facilitation, only depression of the

two components was considered. A similar fit to a 30 Hz GNMDAR train

computed from recordings from the same four GCs is shown in

Fig. 13.5G. This time a good fit (green) was achieved using one component

that had both depression and facilitation.

There is one caveat, however, about the fits in Fig. 13.5F: studies have

shown most of the depression of the AMPAR conductance at the MF–GC

synapse at 100 Hz is not due to the depletion of presynaptic readily releasable

vesicles, but to the desensitization of postsynaptic AMPARs.29,34 Hence,

while the depletion model has accurately captured the overall mean behav-

ior of the MF–GC synapse, it has done so by lumping presynaptic and post-

synaptic sources of depression. This could be the case for the fit toGNMDAR

as well. The technique of fitting a depletion model to the data is still valid,

however, since the intended goal of the fits was to create realistic conduc-

tance waveforms that could be used in a simple IAF model, as reported else-

where.22 An alternative approach would be to simulate each source of

depression and facilitation as independent scale factors, which are then used

to compute gpeak in Eq. (13.30). Whether to lump the various sources of

plasticity into single components or to split them apart into individual com-

ponents ultimately depends on the purpose of the plasticity model. If the aim

of the plasticity model is to generate mean synaptic conductance trains for

driving a neural network, or for injecting into the cell body a real neuron via

dynamic clamp, then the simple lumping approach can be taken. On the

other hand, if the aim of the plasticity model is to reproduce the mean

and variance of the synaptic trains (see below), or gain insight into and con-

struct hypotheses about one or more of the various components of synaptic

transmission, then a “splitting” approach is perhaps better. The splitting

approach will, of course, require extra experimental data to constrain the

various parameters of the independent components. A more detailed

description on how to model the various components of synaptic depression

and facilitation independently can be found in a recent review by Hennig.88

This review also describes other sources of synaptic plasticity not discussed

here, including sources of slow modulation of P, temporal enhancement of

vesicle replenishment and the longer-lasting forms of synaptic plasticity,

augmentation and post-tetanic potentiation. LTP at the MF–GC synapse

has also been modeled in detail elsewhere.90
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7. SIMULATING TRIAL-TO-TRIAL STOCHASTICITY

Up until now, the synaptic models we have presented are determin-

istic. However, as mentioned in Section 1, synapses exhibit considerable

variability in their trial-to-trial response (see, e.g., Fig. 13.2B) due to the

probabilistic nature of the mechanisms underlying synaptic transmission,

from the release of quanta to the binding and opening of postsynaptic

ionotropic receptors (Fig. 13.1). Here, we discuss the simulation of three

sources of stochastic variation that account for the bulk of the variance

exhibited by EPSCs recorded at central synapses: variation in the number

of vesicles released, variation in the amplitude of the postsynaptic quantal

response, and variation in the timing of vesicular release.

The main source of synaptic variation arises from the stochastic nature of

vesicular release at an active zone, a process that lead Katz3 to the quantum

hypothesis. Since the nomenclature of quantal release can be confusing, it is

useful to define terms. Here, we use the term “release sites” to mean func-

tional release sites (i.e., NT). This is equivalent to the maximum number of

vesicles that can be released by a single action potential under resting con-

ditions when all release sites are occupied. Synapses may have one or more

than one release site per anatomical synaptic contact or active zone. Multi-

vesicular release refers to the situation where multiple vesicles are released

per active zone.91 A Poisson model is typically used to describe stochastic

quantal release at the NMJ under conditions of low-release probability.2

This model works well since the number of release sites is large at this syn-

apse. In contrast, a simple binomial model is typically used to describe sto-

chastic quantal release at central synapses,92 which have relatively few release

sites with intermediate release probabilities. The simple binomial model

assumes the vesicular release probability P and the amplitude of the postsyn-

aptic response to a single quantum (quantal peak amplitude, Q) are uniform

across release sites. Under these assumptions, and the proviso that release is

perfectly synchronous, the mean (m), variance (s2), and frequency (f ) of

the postsynaptic response can be expressed as:

m¼NTPQ ð13:35Þ
s2¼Q2NTP 1�Pð Þ¼Qm�m2=NT ð13:36Þ

f k;NT, Pð Þ¼ NT!

k! NT�kð Þ!P
k 1�Pð ÞNT�k ð13:37Þ
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where k denotes the number of quanta released from a maximum of NT

release sites. The parabolic s2–m relation described in Eq. (13.36) has proved

particularly useful as it defines how the variance of the EPSC changes with P.

MPFA, or variance mean analysis, uses a related multinomial model that

includes nonuniform release probability and quantal variability to estimate

Q, P, andNT from synaptic responses recorded at different P. This approach

is discussed in detail elsewhere.29,93,94

This statistical framework makes simulation of a simple binomial synapse

withNT independent release sites, each with release probability P and quan-

tal size Q, relatively straightforward. For the simulations presented in this

section, Q pertains to the peak amplitude of the quantal excitatory postsyn-

aptic conductance but could also pertain to the peak amplitude of the EPSC

or EPSP. On arrival of an action potential at time tj, a random number is

drawn from the interval [0, 1] for each release site. If the random number

is greater than P, then release at the site is considered a failure and the site

is ignored; otherwise release is considered a success and a synaptic conduc-

tance waveform with amplitude Q is generated for that site (e.g.,

Eqs. 13.4–13.7, gpeak¼Q). After computing the release at each site, the syn-

aptic conductances at each site are summed together givingGtotal(t), which is

used as the conductance waveform at tj. On the arrival of the next action

potential, the above steps are repeated. Figure 13.6A1 shows results of such

simulation (blue traces, superimposed at each tj) where values forNT, P, and

Q matched those of an average GC (NT¼5, P¼0.5, Q¼0.2 nS) and stim-

ulation was at low enough frequency that there was no residual conductance

from previous events. The synaptic conductance waveform was a direct

GAMPAR, similar to that in Fig. 13.2D (red trace), and the number of trials

(i.e., action potentials) was 1000, 20 of which are displayed. As expected for

a binomial process with NT¼5, peak values of Gtotal(t) consisted of six dif-

ferent combinations ofQ, including 0 for the case of failures at all sites. Fur-

thermore, the mean, variance, and frequency of the peak amplitudes

(Fig. 13.6A1 and A2) matched the expected values of a random variable with

binomial distribution computed via Eqs. (13.35)–(13.37). When the same

synapse was simulated with a low-release probability (P¼0.1, red), most

action potentials resulted in failure of release (Fig. 13.6A2). Hence, m and

s2 of the peak values of Gtotal(t) were both low (Fig. 13.6A1). In contrast,

when the release probability was high (P¼0.9, green) most action potentials

resulted in release at 4 or 5 sites (Fig. 13.6A2), resulting in high m but low s2

(Fig. 13.6A1). A final comparison of m and s2 across P values showed m and
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Figure 13.6 Simulating trial-to-trial variability using a binomial model with quantal var-
iability and asynchronous release. (A1) Simulations from a binomial model of a typical
MF–GC connection with five release sites (NT) each with 0.5 release probability (P) and
0.2 nS peak conductance response (Q). Q was used to scale a GAMPAR waveform with
only a direct component. A total of 1000 trials were computed, 20 of which are displayed
(blue). Inset shows s2–m relation computed from the peak amplitudes of all 1000 trials
(blue circle), matching the theoretical expected value computed from Eq. (13.36)
(dashed line). Repeating the simulations using a low P (0.1, red) and high P (0.9, green)
confirmed the parabolic s2–m relation of the binomial model. (A2) Frequency distribu-
tion (bottom, blue) of the 1000 peak amplitudes computed in (A1), which closely mat-
ched the expected distribution computed via Eq. (13.37) (not shown). Circles on x-axis
denote m. Distributions for low and high P are also shown (red and green). Top graph
shows Q which lacked variation. (B1) Same as (A1) except Q included intrasynaptic
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s2 matched the parabolic relation predicted in Eq. (13.36) (Fig. 13.6A1), the

hallmark sign of a simple binomial model.

The secondmain source of synaptic variability arises from variation in the

quantal size Q. This can arise from trial-to-trial variation in Q at a single

release site (intrasite or Type I variance) or from differences in the mean

Q between release sites (intersite or Type II variance). Sources of intrasite

quantal variability include variation in the amount of transmitter released

per vesicle and the stochastic gating of postsynaptic receptor channels.

Sources of intersite variability, on the other hand, include variation in the

cleft geometry, number of postsynaptic receptors and electrotonic distance

to the soma (for somatically recorded responses). Whereas the variance aris-

ing from intrasite quantal variation increases linearly with release probability,

the variance arising from intersite quantal variance shows a parabolic relation

as a function of release probability, since its origins are combinatorial. Both

intrasite and intersite quantal variability are often expressed as coefficients of

variation, CVQS and CVQII, respectively, where CV¼s/m, using the nota-
tion of Silver94 for consistency. For GCs, CVQS was estimated to be 0.26

and CVQII to be 0.31.
26 Incorporating these two sources of quantal variance

into a synaptic model is again relatively straightforward. First, an average Q

for each release site i, denoted Qi, is computed by drawing a random value

from a Gaussian distribution with m and s defined by CVQII, where m equals

the desired final average peak synaptic conductance and s¼m �CVQII. For

simulations with a smallNT, however, the small number of samples from the

Gaussian distribution may produce a CVQII and/or m that are relatively dis-

tant from their intended values. To avoid this problem, one can repeat the

sampling of Qi until both CVQII and m fall within a predefined tolerance

range, such as 1% of their intended values. The binomial simulation for

variation (CVQS¼0.26) and intersynaptic variation (CVQII¼0.31), creating a larger
combination of peak amplitudes and therefore larger variance. Inset shows theoretical
s2–m relation with (solid line) and without (dashed line) variation in Q, the
former computed using Eq. 11 of Silver.94 (B2) Same as (A2) but for the simulations
in (B1). Top graph shows the distribution of the average Q at each site i (i.e., Qi, colored
circles) with m�s¼0.20�0.62 nS (black circle), as defined by CVQII. Gaussian curves
show distribution of Q at each site, defined by Qi and CVQS. (C1) Same as (A1) except
a delay, or release time (trelease), was added to each quantal release event. Values for
trelease were randomly sampled from the release time course shown in the inset, which
is typical for a single release site at a MF–GC connection. (C2) Same as (A2) but for the
simulations in (C1). Peaks were measured over the entire simulation window.

339Data-Driven Modeling of Synaptic Transmission and Integration



NT and P can then be executed as described in the previous paragraph,

except for the additional step of adding intrasite variability toQ at the arrival

of each action potential. To do this, a value forQ is randomly drawn from a

Gaussian distribution with m and s defined by CVQS, where m now equalsQi

and s¼Qi �CVQS. Figure 13.6B1 shows the effects of adding intrasite and

intersite quantal variance to the binomial model simulations in Fig. 13.6A1

(CVQS¼0.26 and CVQII¼0.31). In this case, the peak amplitude ofGtotal(t)

showed a significant increase in variation (Fig. 13.6B1), resulting in a

smearing of the peak-amplitude frequency distribution (Fig. 13.6B2).

Hence, as these results demonstrate, a nonuniform Q tends to obscure

the underlying binomial process, especially under circumstances when a sin-

gle value of P is investigated. Only by varying P does the underlying bino-

mial process become apparent in the s2–m relation and frequency

distribution of peak values (i.e., red vs. blue vs. green data points).

The third source of synaptic variation arises from the asynchronous

release of synaptic vesicles, which can be considered another source of

intrasite variation, or Type I variance, unless release sites are far apart and

axon conduction introduces significant delays between sites. Asynchronous

release is usually quantified by a function known as the release time course

(RTC), computed by measuring the latency of individual quantal events in

postsynaptic recordings at low-release probability,95 or computed by

deconvolution methods.26 A detailed discussion on how to estimate the

RTC for synapses either with a few release sites or with many release sites

is given byMinneci and colleagues.95 In GCs, the RTC for a single site has a

gamma-like distribution that rises abruptly from 0 and peaks near 0.1 ms,26

similar to that shown in Fig. 13.6C1.With such a RTC distribution at hand,

simulating asynchronous vesicular release only requires the following two

steps. First, a release time (trelease) is randomly drawn from the RTC distri-

bution for each release site at the arrival of an action potential at tj. Second,

each site’s trelease is added to tj when computing the quantal waveform (e.g.,

t0 ¼ t� tj� trelease in Eqs. 13.4–13.7) thereby creating asynchronous release.

Figure 13.6C1 shows such a simulation using the RTC of a GC, where the

delay in quantal release is evident in the smearing of peaks. Here, in order to

show the sole effects of asynchronous release, there was no variation in Q.

Computing the frequency of peak amplitudes, where peaks are computed

over the entire simulationwindow, shows asynchronous release has no effect

on release events composed of less than two quanta, as expected. However,

for release events composed of two or more quanta, asynchronous release

causes a reduction in peak amplitudes, that is, a smearing of peak amplitudes
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toward smaller values, where the smearing effect is more pronounced for

those events composed of the largest number of quanta (Fig. 13.6C2).

On the other hand, if the peak amplitude is computed by averaging over

a fixed time window centered on the mean peak EPSC, as for MPFA, a

slightly different effect is observed. In this case, variability is also observed

at those release events composed of a single quantum, since the peak of these

events may fall outside the measurement window.94

Deviation from the variance predicted from binomial models of vesicular

release can also arise from nonuniformities in release probability P. Disper-

sion in the release probability across release sites, which can also be quanti-

fied by the coefficient of variation (CVP), tends to reduce the variance of the

synaptic response. Since this source of variation has the largest impact at

high-release probabilities, its incorporation into a binomial model may

not be necessary when simulating synapses with low P. If one wishes to

include variability in the release probability, however, methods for doing

so can be found elsewhere.94,95

Finally, we consider the simulation of a binomial synapse with short-

term depression and facilitation, similar to that described previously.96

The most flexible way to simulate such a synapse is to treat each release site

independently, as this will allow one to add variability to the quantal size Q

and vesicle release time. For simplicity, we here assume the differential equa-

tions that describe depression and facilitation have exact analytical solutions,

in which case the RP recursive algorithm described in Eqs. (13.28)–(13.32)

can be used to simulate release at each release site. However, since each site is

now simulated independently,R represents the probability a release site con-

tains a vesicle, rather than the fraction of filled release sites. Addition of

binomial release then requires the following two modifications of the RP

recursive algorithm. First, step 2 described in Eq. (13.30) is modified as fol-

lows: a random number is drawn from the interval [0, 1]; if the random

number is greater thanRj�e �Pj�e (i.e., the value R times P at the arrival time

of the action potential), then release at the site is considered a failure and the

site is ignored; otherwise release is considered a success and a synaptic con-

ductance waveform with amplitude Q is added to Gtotal(t). Second, step 3

described in Eq. (13.31) is modified so that the decrement in R only occurs

in the event of vesicle release (the increment in P described in Eq. (13.32) is

always implemented since facilitation is assumed to be linked to the arrival of

the action potential, here assumed to always occur at the time of the stim-

ulus); furthermore, in the event of vesicle release, R is now decremented to

zero (i.e., Rjþe¼0). Figure 13.7A1 shows results of such a simulation for a
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synapse with five release sites, each with P¼0.5 and Q¼0.2 nS. To dem-

onstrate the effects of depression and facilitation at moderate levels, the syn-

apse was driven with a 100 Hz train of action potentials. Here, the binomial

nature of vesicle release can be seen in the time course of R at each release

site (blue traces), and Gtotal(t) computed from the sum of all quanta released

Figure 13.7 A binomial model with short-term depression and facilitation. (A1) Simu-
lation of a binomial synapse with NT¼5, P¼0.5, and Q¼0.2 nS using the RP recursive
algorithm described in Eqs. (13.28)–(13.32) (tr¼50 ms, DP¼0.5, tf¼12 ms). The stimu-
lus was a 100 Hz train of action potentials (top). Bottom graphs show time evolution of R
(blue) and P (red) for each release sight during the train. Note, action potentials always
caused facilitation, but only caused depression when there was success of vesicle
release. At each release site, vesicle release was a success if a random number drawn
from [0, 1] was less than the product RP. Gray trace (bottom) shows the sum of resulting
quantal waveforms from all five sites. The quantal waveform was a GAMPAR waveform
with only a direct component, the same used in Fig. 13.6. (A2) Conductance trains of
the same simulation in (A1) for 100 trials (gray). Black trace shows average of the
100 trials, which closely matches the time course of the same simulation computed
for a deterministic RP model (green dashed line). (B1 and B2) Same as (A1) and (A2)
but for a 300 Hz train of action potentials.
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at each site (gray trace). The time course of P, on the other hand, is not bino-

mial but shows an incremental increase at the arrival of each action potential.

Figure 13.7A2 shows the average of 100 such simulations (black trace),

which closely matches the same simulation computed for a deterministic

synapse (green trace). Figure 13.7B1 and B2 shows the same analysis for a

300 Hz train of action potentials to demonstrate the effect of a larger level

of synaptic depression and facilitation. Note that the simulations in Fig. 13.7

include no variability in Q or the vesicle release times. To add variability to

Q, one only needs to compute a nonuniform Q for each release site as

described above, using CVQS and CVQII. One can also add variability to

the vesicle release times by simulating asynchronous release at each release

site using a RTC function as described above.

8. GOING MICROSCOPIC

The models discussed in this chapter are intended to capture the

basic macroscopic features of synaptic transmission, mainly the time

and voltage dependence of the transfer of charge into the postsynaptic

neuron. These types of models are useful for investigating signal

processing at the cellular and network level but are generally not as useful

for investigating the mechanism underlying signal transmission at a

microscopic level. Hence, other modeling approaches are usually adopted

when studying microscopic aspects of synaptic transmission. These

approaches typically use partial differential equations to describe one or

more aspect of the system under investigation, which might include

the diffusion of ions, buffers, and vesicles, reactions between these enti-

ties, and conformational changes of protein structures (i.e., state transi-

tions). The equations that describe the biological system under

investigation are then solved numerically. Early examples of simulating

presynaptic Ca2þ dynamics, including Ca2þ influx, diffusion, buffering,

and extrusion in three dimensions, include the studies of Fogelson and

Zucker97 and Roberts.98 More recent studies attempt to simulate the

mechanisms underlying Ca2þ-secretion coupling.39,99 Finite-difference

methods have also been used to simulate glutamate dynamics within

the synaptic cleft, including glutamate release and diffusion in three

dimensions.32,34 A Monte Carlo approach can also be used100; in this

case, a simulator such as MCell should be considered (http://www.

mcell.cnl.salk.edu/). On the postsynaptic side, kinetics of ionotropic

receptors such as AMPARs and NMDARs can be described by Markov
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models with multiple states, including open, closed, blocked, and desen-

sitized states.32,34,63,91 Solutions to Markov models can be computed via

transition matrixes, or stochastically (see Ref. 41).

9. SIMULATORS AND STANDARDIZED MODEL
DESCRIPTIONS

A number of options exist for creating computer simulations of the

synaptic models presented in this chapter. Generic simulation and analysis

packages like MATLAB (http://www.mathworks.co.uk/products/

matlab/) and Igor Pro (http://www.wavemetrics.com) are commonly used

for simulating relatively simple models. These packages have the advantage

that the user is completely in control of the model structure and can perform

analysis in the same scripting language as that used in the model description.

However, these packages are less useful when the models become so com-

plex that the user’s scripts start to reproduce the functionality of freely avail-

able neuronal simulation packages. The more complex scripts can also be

difficult for others to understand and adapt for their own needs.

Packages like NEURON101 and GENESIS102 have been used for many

years to simulate neural systems from single cells to complex neuronal net-

works, with inbuilt features to assist in the development of mul-

ticompartmental neurons, membrane conductances, synapse models, and

spiking networks. These packages, along with a recent reimplementation

of GENESIS called MOOSE (http://moose.ncbs.res.in/), are freely avail-

able, well documented, and supported by user communities. They are par-

ticularly useful for physiological data-driven simulations, for example,

investigating the effects of synaptic integration in complex neuronal mor-

phologies.46 They also have a number of inbuilt synaptic model types which

users can incorporate into their own custom models, particularly in NEU-

RON using its NMODL language. A number of published models using

these simulation packages are available online at ModelDB (http://

senselab.med.yale.edu/modeldb/). NEST (http://www.nest-initiative.org)

and Brian (http://www.briansimulator.org) are two other popular simula-

tion packages which focus more on spiking neural networks. While the syn-

apse models of these packages are more phenomenological than biophysical,

they have been used in several investigations into the effects of synaptic

properties on network function.

While it is useful having multiple simulators to build synaptic and net-

work models, a disadvantage is that the simulators often have different
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languages for specifying the models, making exchange of models between

investigators difficult. NeuroML (http://www.NeuroML.org; Ref. 103) is

an initiative to define a simulator-independent language to define cell,

ion channel, synapse, and network models and to facilitate exchange of these

models. A range of synapse model types are supported, including single- and

double-exponential synapses, voltage-dependent synaptic conductances,

short-term plasticity, and spike-timing-dependent plasticity. NeuroML

v2.0 adds greater support for users to extend the markup language and define

their own synapse models in a simulator-independent manner. The Open

Source Brain repository (http://www.opensourcebrain.org) is a recent ini-

tiative to encourage collaborative development of a range of models in com-

putational neuroscience. Moreover, making the models available in

NeuroML ensures transparency, accessibility and cross-simulator portability.

10. SUMMARY

In this chapter, we discussed how mathematical models can capture

various aspects of synaptic transmission. At their most basic level, the models

are simple empirical descriptions of the average conductance waveform and

current–voltage relation of postsynaptic receptors. Above this basic level, the

models can be extended to capture more and more of the behavior of real

synapses, including stochasticity and short-term plasticity. Throughout the

chapter, we examined how well the different models replicate the experi-

mental behavior of the cerebellar MF–GC synapse, an extensively charac-

terized excitatory central synapse. The techniques we used can equally be

applied to other excitatory and inhibitory synapses in the CNS. In our

data-driven approach, we hoped to have highlighted a few key principles

about modeling synaptic transmission, and modeling neurons in general.

These include considering the balance between accurately replicating the

biological processes under investigation and simplifying model descriptions

to reduce variables and computational overhead. We urge modelers to

obtain and directly compare their models to raw data (e.g., EPSCs and cur-

rent–voltage relations) from the system under investigation wherever possi-

ble. This is important for ensuring the system being modeled is operating

within physiologically relevant regimes. A data-driven approach also enables

higher dimensional synaptic, neuronal, and networkmodels to be effectively

constrained and the effects of natural variability of presynaptic and postsyn-

aptic elements to be explored.
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12. Biró AA, Holderith NB, Nusser Z. Quantal size is independent of the release proba-
bility at hippocampal excitatory synapses. J Neurosci. 2005;25(1):223–232.
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